›› 2003, Vol. 24 ›› Issue (1): 13-16.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Comparative study on shear strength of unsaturated red clay and expansive soils

YANG Qing, HE Jie, LUAN Mao-tian   

  1. School of Civil and Hydraulic Engineering and State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024 China
  • Received:2002-04-05 Online:2003-02-10 Published:2014-08-27

Abstract: Red clay is of swelling properties in a similar way to expansive soils. Compared with common clayey soils, the strength behavior of red clay and expansive soils are more complicated. Strength of red clay and expansive soils, as the standard of shear resistance, is an important parameter used in evaluating stability of embankment slopes such canal, roadbed and earth dam. Many failure records of earth constructions due to red clay and expansive soil slopes and foundations require a definite understanding of strength of red clay and expansive soils. The strength characteristics of unsaturated red clay and expansive soils have been studied experimentally. The main features and influencing factors of strength behavior of red clay and expansive soils which are different from those of common clayey soils are discussed. The interrelationships between the shear strength parameters and water content of red clay and expansive soils are established on the basis of experimental data.

Key words: red clay, expansive soils, shear strength, strength parameters, water content

CLC Number: 

  • TU 411.7
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] WANG Peng-fei, TAN Wen-hui, MA Xue-wen, LI Zi-jian, LIU Jing-jun, WU Yang-fan, . Relationship between strength parameter and water content of fault gouge with different degrees of consolidation [J]. Rock and Soil Mechanics, 2019, 40(5): 1657-1662.
[2] LI Shu-zhao, WANG Zhong-chang, JIA Xu, HE Lin-lin, . Simplified calculation method for cyclic bearing capacity of suction anchors with taut mooring in soft clay [J]. Rock and Soil Mechanics, 2019, 40(5): 1704-1712.
[3] ZHOU Xiao-wen, CHENG Li, ZHOU Mi, WANG Qi, . Behavior of ball penetration in clay in centrifuge testing [J]. Rock and Soil Mechanics, 2019, 40(5): 1713-1720.
[4] FU Hong-yuan, LIU Jie, ZENG Ling, BIAN Han-bing, SHI Zhen-ning, . Deformation and strength tests of pre-disintegrating carbonaceous mudstone under loading and soaking condition [J]. Rock and Soil Mechanics, 2019, 40(4): 1273-1280.
[5] WANG Juan-juan, HAO Yan-zhou, WANG Tie-hang. Experimental study of structural characteristics of unsaturated compacted loess [J]. Rock and Soil Mechanics, 2019, 40(4): 1351-1357.
[6] ZHENG Guo-feng, GUO Xiao-xia, SHAO Long-tan, . Experimental verification of an unsaturated shear strength criterion based on the state surface expression [J]. Rock and Soil Mechanics, 2019, 40(4): 1441-1448.
[7] JIN Xiao, YANG Wen, MENG Xian-Hong, LEI Le-Le, . Deduction and application of unfrozen water content in soil based on electrical double-layer theory [J]. Rock and Soil Mechanics, 2019, 40(4): 1449-1456.
[8] ZHANG Jing-ke, SHAN Ting-ting, WANG Yu-chao, WANG Nan, FAN Meng, ZHAO Lin-yi, . Mechanical properties of soil-grout interface of anchor system in earthen sites [J]. Rock and Soil Mechanics, 2019, 40(3): 903-912.
[9] JIANG Qiang-qiang, LIU Lu-lu, JIAO Yu-yong, WANG Hao, . Strength properties and microstructure characteristics of slip zone soil subjected to wetting-drying cycles [J]. Rock and Soil Mechanics, 2019, 40(3): 1005-1012.
[10] QIU Min, YUAN Qing, LI Chang-jun, XIAO Chao-chao, . Comparative study of calculation methods for undrained shear strength of clay based on cavity expansion theory [J]. Rock and Soil Mechanics, 2019, 40(3): 1059-1066.
[11] CHEN Xi, ZENG Ya-wu, SUN Han-qing, REN Shu-lin, LIU Wei. A new peak shear strength model of rock joints [J]. Rock and Soil Mechanics, 2018, 39(S2): 123-130.
[12] ZHANG Lei, LIU Hui, WANG Tie-hang. Shear tests on loess-concrete interface under consolidation and unconsolidation conditions [J]. Rock and Soil Mechanics, 2018, 39(S2): 238-244.
[13] CHEN Rui-feng, TIAN Gao-yuan, MI Dong-yun, DONG Xiao-qiang,. Study of basic engineering properties of loess modified by red mud [J]. , 2018, 39(S1): 89-97.
[14] DONG Jin-yu, WANG Chuang, ZHOU Jian-jun, YANG Ji-hong, LI Yan-wei,. Experimental study of foam-improved sandy gravel soil [J]. , 2018, 39(S1): 140-148.
[15] XU Nian-chun, WU Tong-qing, PI Hai-yang, YOU Lei, WU Yue,. Inversion of shear strength of soil based on flexible bearing plate loading test [J]. , 2018, 39(S1): 227-234.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Wei,LI Xing-zhao. Analysis method of rigid piled raft foundation under vertical loading[J]. , 2009, 30(11): 3441 -3446 .
[2] SUN De-an,CHEN Bo. Mechanical behavior of remolded overconsolidated Shanghai soft clay and its elastoplastic simulation[J]. , 2010, 31(6): 1739 -1743 .
[3] ZHU Zhen-de,SUN Lin-zhu,WANG Ming-yang. Damping ratio experiment and mesomechanical analysis of deformation failure mechanism on rock under different frequency cyclic loadings[J]. , 2010, 31(S1): 8 -12 .
[4] LEI Jin-bo,CHEN Cong-xin. Research on load transfer mechanism of composite foundation of rigid pile with cap based on hyperbolic model[J]. , 2010, 31(11): 3385 -3391 .
[5] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[6] CHEN Xu-guang,ZHANG Qiang-yong. Mechanism analysis of phenomenon of zonal disintegration in deep tunnel model test under high geostress[J]. , 2011, 32(1): 84 -90 .
[7] DING Guang-ya, CAI Yuan-qiang, XU Chang-jie. Analysis of vibration isolation of a row of rigid piles to plane SV waves in saturated soil[J]. , 2009, 30(3): 849 -854 .
[8] ZHANG Cheng-ping,ZHANG Ding-li,LUO Jian-jun,WANG Meng-shu,WU Jie-pu. Remote monitoring system applied to the construction of metro station undercrossing existing metro tunnel[J]. , 2009, 30(6): 1861 -1866 .
[9] HOU Wei2, JIA Yong-gang1,2, SONG Jing-tai3, MENG Xiang-mei4, SHAN Hong-xian1, 2. Factors influencing critical shear stress of silty sediment seabed in Yellow River delta[J]. , 2011, 32(S1): 376 -0381 .
[10] ZHANG Xue-chan , GONG Xiao-nan , YIN Xu-yuan , ZHAO Yu-bo. Monitoring analysis of retaining structures for Jiangnan foundation pit of Qingchun road river-crossing tunnel in Hangzhou[J]. , 2011, 32(S1): 488 -0494 .