›› 2005, Vol. 26 ›› Issue (12): 1931-1935.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Evaluation of effect of intermediate principal stress on sand shear strength

LIU Jin-long1, LUAN Mao-tian1~3, YUAN Fan-fan1, WANG Ji-li1, XU Cheng-shun2, 3   

  1. 1. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 2. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China; 3. Institute of Geotechnical Engineering, School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China
  • Received:2004-11-22 Online:2005-12-10 Published:2014-01-12

Abstract: The shear strength parameters of soils are conventionally obtained by soil triaxial compression tests in laboratory. However, the soils in engineering practice are not always in axisymmetric stress state as in conventional triaxial compression tests. Therefore, it is important to examine the inter-relationship between strength parameters under different stress states. Based on the spatial mobilization plane failure criterion proposed by Matsuoka and Nakai, the strength parameters for different intermediate principal stresses are generally compared. It is demonstrated that the intermediate principal stress ratio has a considerable effect on shear strength parameters of soils; and the effect will be the most significant under plane-strain condition.

Key words: shear strength, intermediate principal stress, practical stress condition, spatial mobilization plane criterion

CLC Number: 

  • TU 432
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] LI Shu-zhao, WANG Zhong-chang, JIA Xu, HE Lin-lin, . Simplified calculation method for cyclic bearing capacity of suction anchors with taut mooring in soft clay [J]. Rock and Soil Mechanics, 2019, 40(5): 1704-1712.
[2] ZHOU Xiao-wen, CHENG Li, ZHOU Mi, WANG Qi, . Behavior of ball penetration in clay in centrifuge testing [J]. Rock and Soil Mechanics, 2019, 40(5): 1713-1720.
[3] FU Hong-yuan, LIU Jie, ZENG Ling, BIAN Han-bing, SHI Zhen-ning, . Deformation and strength tests of pre-disintegrating carbonaceous mudstone under loading and soaking condition [J]. Rock and Soil Mechanics, 2019, 40(4): 1273-1280.
[4] ZHENG Guo-feng, GUO Xiao-xia, SHAO Long-tan, . Experimental verification of an unsaturated shear strength criterion based on the state surface expression [J]. Rock and Soil Mechanics, 2019, 40(4): 1441-1448.
[5] ZHANG Jing-ke, SHAN Ting-ting, WANG Yu-chao, WANG Nan, FAN Meng, ZHAO Lin-yi, . Mechanical properties of soil-grout interface of anchor system in earthen sites [J]. Rock and Soil Mechanics, 2019, 40(3): 903-912.
[6] JIANG Qiang-qiang, LIU Lu-lu, JIAO Yu-yong, WANG Hao, . Strength properties and microstructure characteristics of slip zone soil subjected to wetting-drying cycles [J]. Rock and Soil Mechanics, 2019, 40(3): 1005-1012.
[7] QIU Min, YUAN Qing, LI Chang-jun, XIAO Chao-chao, . Comparative study of calculation methods for undrained shear strength of clay based on cavity expansion theory [J]. Rock and Soil Mechanics, 2019, 40(3): 1059-1066.
[8] FANG Jin-jin, FENG Yi-xin, ZHAO Wei-long, WANG Li-ping, YU Yong-qiong, . Nonlinear constitutive model for intact loess in true tri-axial tests [J]. Rock and Soil Mechanics, 2019, 40(2): 517-528.
[9] CHEN Xi, ZENG Ya-wu, SUN Han-qing, REN Shu-lin, LIU Wei. A new peak shear strength model of rock joints [J]. Rock and Soil Mechanics, 2018, 39(S2): 123-130.
[10] ZHANG Lei, LIU Hui, WANG Tie-hang. Shear tests on loess-concrete interface under consolidation and unconsolidation conditions [J]. Rock and Soil Mechanics, 2018, 39(S2): 238-244.
[11] CHEN Rui-feng, TIAN Gao-yuan, MI Dong-yun, DONG Xiao-qiang,. Study of basic engineering properties of loess modified by red mud [J]. , 2018, 39(S1): 89-97.
[12] DONG Jin-yu, WANG Chuang, ZHOU Jian-jun, YANG Ji-hong, LI Yan-wei,. Experimental study of foam-improved sandy gravel soil [J]. , 2018, 39(S1): 140-148.
[13] XU Nian-chun, WU Tong-qing, PI Hai-yang, YOU Lei, WU Yue,. Inversion of shear strength of soil based on flexible bearing plate loading test [J]. , 2018, 39(S1): 227-234.
[14] CUI Guo-jian, ZHANG Chuan-qing, LIU Li-peng, ZHOU Hui, CHENG Guang-tan,. Study of effect of shear velocity on mechanical characteristics of bolt-grout interface [J]. , 2018, 39(S1): 275-281.
[15] WANG Xin-zhi, WENG Yi-ling, WANG Xing, CHEN Wei-jun, . Interlocking mechanism of calcareous soil [J]. , 2018, 39(9): 3113-3120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[2] MU Lin-long,HUANG Mao-song,GONG Wei-ming,YIN Yong-gao. Response analysis of anchorage foundation under lateral loading[J]. , 2010, 31(1): 287 -292 .
[3] DONG Zhi-liang, CHEN Ping-shan, MO Hai-hong, ZHANG Gong-xin. Effects of permeability coefficients on consolidation of soft clay under by vacuum preloading[J]. , 2010, 31(5): 1452 -1456 .
[4] MA Xiao-hua, CAI Yuan-qiang, XU Chang-jie. Rocking vibration of an elastic strip footing on saturated soil[J]. , 2010, 31(7): 2164 -2172 .
[5] HAO Dong-xue, CHEN Rong, LUAN Mao-tian, WU Ke. Numerical analysis of SBPT for estimation of undrained shear strength[J]. , 2010, 31(7): 2324 -2328 .
[6] XU Ying, Li Tong-chun,Mo Jian-bing. Influence of excess pore water pressure induced by pile driving on stability of warf slopes[J]. , 2010, 31(8): 2525 -2529 .
[7] LIU Xiao-ming, LUO Zhou-quan, YANG Biao, ZHANG Bao. Numerical modeling and geological body visualization for complex mine[J]. , 2010, 31(12): 4006 -4010 .
[8] DU Yan-jun,JIN Fei,LIU Song-yu,CHEN Lei,ZHANG Fan. Review of stabilization/solidification technique for remediation of heavy metals contaminated lands[J]. , 2011, 32(1): 116 -124 .
[9] HU Xiu-hong,WU Fa-quan. Research on two-parameter negative exponential distribution of discontinuity spacings in rock mass[J]. , 2009, 30(8): 2353 -2358 .
[10] ZHANG Le-wen, QIU Dao-hong, LI Shu-cai, ZHANG De-yong. Study of tunnel surrounding rock classification based on rough set and ideal point method[J]. , 2011, 32(S1): 171 -175 .