›› 2005, Vol. 26 ›› Issue (S1): 213-217.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Nonlinear analysis of carrying capacity of a large diameter steel pipe pile

WANG Hong, LI Zhi-ming, WANG Lin, LIU Bao-guo   

  1. Department of Naval and Civil Architecture Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
  • Received:2005-02-28 Published:2005-12-15

Abstract: This paper has deduced the effected diameter of a closed large diameter pipe pile on sand ground as well as the horizontal resistance (or moment) acting on the rigid large diameter pipe pile. And, it provides the theoretically optimal design for the similar case; and by using the MATLAB program to analyze the axial stiffness of single pile, the relationships of stiffness of single pile, and the equivalent stiffness modulus of the soil beside the pile for unit depth, the equivalent stiffness modulus of the soil at the bottom of the pile, the thickness of the steel pipe pile, as well as its diameter, length and the elastic modulus for the used material are now much more clear. Based on this idea, the corresponding axial force can be calculated by using the load transfer hyperbolic function for known or assumed compressive deformation of the pile body.

Key words: large diameter steel pipe pile, settlement, carrying capacity, deflection, axial stiffness of single pile

CLC Number: 

  • U 443.13+3
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] HUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, LUO Kun, LEI Xiao-yan, XU You-jun, . Analysis for vertical earth pressure transference on overlaying soils of shield tunnel under uniform surface surcharge [J]. Rock and Soil Mechanics, 2019, 40(6): 2213-2220.
[2] ZHANG Zhi-guo, ZHANG Rui, HUANG Mao-song, GONG Jian-fei, . Optimization analysis of pile group foundation based on differential settlement control and axial stiffness under vertical loads [J]. Rock and Soil Mechanics, 2019, 40(6): 2354-2368.
[3] LIU Nian-wu, CHEN Yi-tian, GONG Xiao-nan, YU Ji-tao, . Analysis of deformation characteristics of foundation pit of metro station and adjacent buildings induced by deep excavation in soft soil [J]. Rock and Soil Mechanics, 2019, 40(4): 1515-1525.
[4] LIU Cheng-yu, ZHANG Xiang, CHENG Kai, CHEN Bo-wen, . Experimental study of settlement caused by water and sand inrush in underground engineering [J]. Rock and Soil Mechanics, 2019, 40(3): 843-851.
[5] GAO Jun, DANG Fa-ning, LI Hai-bin, YANG Chao, REN Jie, . Simplified analytical force analysis model of asphalt concrete core [J]. Rock and Soil Mechanics, 2019, 40(3): 971-977.
[6] TAN Guo-hong, XIAO Hai-zhu, DU Xun, HU Wen-jun. Settlement analysis of caisson foundation under main tower of a long span cable-stayed bridge for highway and railway [J]. Rock and Soil Mechanics, 2019, 40(3): 1113-1120.
[7] XU Peng, JIANG Guan-lu, REN Shi-jie, TIAN Hong-cheng, WANG Zhi-meng, . Experimental study of dynamic response of subgrade with red mudstone and improved red mudstone [J]. Rock and Soil Mechanics, 2019, 40(2): 678-683.
[8] ZHONG Guo-qiang, WANG Hao, LI Li, WANG Cheng-tang, XIE Bi-ting, . Prediction of maximum settlement of foundation pit based on SFLA-GRNN model [J]. Rock and Soil Mechanics, 2019, 40(2): 792-798.
[9] FEI Kang, DAI Di, HONG Wei, . A simplified method for working performance analysis of single energy piles [J]. Rock and Soil Mechanics, 2019, 40(1): 70-80.
[10] WANG Jian-jun, CHEN Fu-quan, LI Da-yong. A simple solution of settlement for low reinforced embankments on Kerr foundation [J]. Rock and Soil Mechanics, 2019, 40(1): 250-259.
[11] DU Wei-fei, ZHENG Jian-guo, LIU Zheng-hong, ZHANG Ji-wen, YU Yong-tang, . Settlement behavior of high loess-filled foundation and impact from exhaust conditions [J]. Rock and Soil Mechanics, 2019, 40(1): 325-331.
[12] YANG Gong-biao, ZHANG Cheng-ping, MIN Bo, CAI Yi, . Elastic solution of soil displacement induced by shallow circular tunnel with a cavern in a stratum using function of complex variable method [J]. Rock and Soil Mechanics, 2018, 39(S2): 25-36.
[13] ZHU Ning , ZHOU Yang , LIU Wei, SHI Pei-xin, WU Ben,. Study of silty soil behavior disturbed for installation of diaphragm wall in Suzhou [J]. , 2018, 39(S1): 529-536.
[14] REN Lian-wei, ZHOU Gui-lin, DUN Zhi-lin, HE Ting-yin, YANG Quan-wei, ZHANG Min-xia,. Case study on suitability and settlement of foundation in goaf site [J]. , 2018, 39(8): 2922-2932.
[15] LAI Feng-wen, CHEN Fu-quan, WAN Liang-long,. Vertical stress calculation of shallow foundations based on partially developed soil arching effect [J]. , 2018, 39(7): 2546-2554.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Ming, CHEN Jin-feng, SONG Er-xiang. Large scale triaxial testing of Douposi moderately-to-slightly weathered fill materials[J]. , 2010, 31(8): 2496 -2500 .
[2] XU Fei,XU Wei-ya,WEN Sen,LIU Zao-bao,ZHAO Yan-xi. Projection pursuit based on particle swarm optimization for evaluation of surrounding rock stability[J]. , 2010, 31(11): 3651 -3655 .
[3] QIAN Ji-yun, ZHANG Ga, ZHANG Jian-min. Centrifuge model tests for deformation mechanism of soil slope during rainfall[J]. , 2011, 32(2): 398 -402 .
[4] ZHAO Jia-xi, QI Hui, YANG Zai-lin. Scattering of SH-waves by a shallow buried cylindrical inclusion with a partially debonded curve in half space[J]. , 2009, 30(5): 1297 -1302 .
[5] WEI Ning,LI Xiao-chun,WANG Yan,GU Zhi-meng. Resources quantity and utilization prospect of methane in municipal solid waste landfills[J]. , 2009, 30(6): 1687 -1692 .
[6] LU Xiao-bing , ZHANG Xu-hui , CUI Peng. Numerical simulation of clastic grain flow along a slope[J]. , 2009, 30(S2): 524 -527 .
[7] LIU Zhao-chun , CHAI Jun-rui , JIA Xiao-mei , QIN lei , SUN Xu-shu. Numerical simulation of concentration diffusion of harmful gas in heading face with forced ventilation[J]. , 2009, 30(S2): 536 -539 .
[8] DAI Guo-liang, ZHOU Xiang-qin, LIU Yun-zhong, LIU Li-ji, GONG Wei-ming. Model test research on horizontal bearing capacity of closed diaphragm wall[J]. , 2011, 32(S2): 185 -189 .
[9] HU Wei,HAN Jian-gang,LI Guang-fan. A simplified stress-strain relationship of saturated soil based on structure’s evolution[J]. , 2011, 32(9): 2651 -2655 .
[10] HSIEH Chi-tai , KUO Chuh-chih , WANG Chein-lee , CHEN Yue-gau. A study of crack propagation measurement on sandstone with a single inclined flaw under uniaxial compression[J]. , 2011, 32(10): 2917 -2922 .