›› 2005, Vol. 26 ›› Issue (S1): 95-98.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study on laboratory test of vacuum and surcharge preloading

WU Gui-fen1,2, GAO Yu-feng1, WEI Dai-xian3, LIU Han-long1   

  1. 1.Research Institute of Geotechnical Engineering, Hohai University, Nanjing 210098, China; 2. Guangxi Electric Power Investigation, Design and Research Institute, Nanning 530023, China; 3. Shandong Provincial Linyi Administration Bureau of Bank and Reservoir, Linyi 276001, China
  • Received:2005-01-21 Published:2005-12-15

Abstract: By modeling vacuum preloading and surcharge preloading in different depths of the soil using the laboratory test; then soil properties before and after test, axial settlements, volume changes of two methods are analyzed. And some useful conclusions are drawn; soil properties are improved and penetrability after vacuum preloading is better than the one after surcharge preloading, while compressibility after surcharge preloading is better than the one after vacuum preloading. Settlement after surcharge preloading is much bigger than the one after vacuum preloading, and it is constringed more slowly than the one of vacuum preloading. Volume change after vacuum preloading is 1.8 times more than the one after surcharge preloading, and volume change of shallow soil is more than the one of deep soil after vacuum and surcharge preloading.

Key words: laboratory test, vacuum preloading, surcharge preloading, strengthening result, settlement, volume change, lateral deformation

CLC Number: 

  • TU 454
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] HUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, LUO Kun, LEI Xiao-yan, XU You-jun, . Analysis for vertical earth pressure transference on overlaying soils of shield tunnel under uniform surface surcharge [J]. Rock and Soil Mechanics, 2019, 40(6): 2213-2220.
[2] ZHANG Zhi-guo, ZHANG Rui, HUANG Mao-song, GONG Jian-fei, . Optimization analysis of pile group foundation based on differential settlement control and axial stiffness under vertical loads [J]. Rock and Soil Mechanics, 2019, 40(6): 2354-2368.
[3] ZHUANG Hai-yang, FU Ji-sai, CHEN Su, CHEN Guo-xing, WANG Xue-jian, . Liquefaction and deformation of the soil foundation around a subway underground structure with a slight inclined ground surface by the shaking table test [J]. Rock and Soil Mechanics, 2019, 40(4): 1263-1272.
[4] LIU Nian-wu, CHEN Yi-tian, GONG Xiao-nan, YU Ji-tao, . Analysis of deformation characteristics of foundation pit of metro station and adjacent buildings induced by deep excavation in soft soil [J]. Rock and Soil Mechanics, 2019, 40(4): 1515-1525.
[5] LIU Cheng-yu, ZHANG Xiang, CHENG Kai, CHEN Bo-wen, . Experimental study of settlement caused by water and sand inrush in underground engineering [J]. Rock and Soil Mechanics, 2019, 40(3): 843-851.
[6] TAN Guo-hong, XIAO Hai-zhu, DU Xun, HU Wen-jun. Settlement analysis of caisson foundation under main tower of a long span cable-stayed bridge for highway and railway [J]. Rock and Soil Mechanics, 2019, 40(3): 1113-1120.
[7] XU Peng, JIANG Guan-lu, REN Shi-jie, TIAN Hong-cheng, WANG Zhi-meng, . Experimental study of dynamic response of subgrade with red mudstone and improved red mudstone [J]. Rock and Soil Mechanics, 2019, 40(2): 678-683.
[8] ZHONG Guo-qiang, WANG Hao, LI Li, WANG Cheng-tang, XIE Bi-ting, . Prediction of maximum settlement of foundation pit based on SFLA-GRNN model [J]. Rock and Soil Mechanics, 2019, 40(2): 792-798.
[9] FEI Kang, DAI Di, HONG Wei, . A simplified method for working performance analysis of single energy piles [J]. Rock and Soil Mechanics, 2019, 40(1): 70-80.
[10] WANG Jian-jun, CHEN Fu-quan, LI Da-yong. A simple solution of settlement for low reinforced embankments on Kerr foundation [J]. Rock and Soil Mechanics, 2019, 40(1): 250-259.
[11] DU Wei-fei, ZHENG Jian-guo, LIU Zheng-hong, ZHANG Ji-wen, YU Yong-tang, . Settlement behavior of high loess-filled foundation and impact from exhaust conditions [J]. Rock and Soil Mechanics, 2019, 40(1): 325-331.
[12] YANG Gong-biao, ZHANG Cheng-ping, MIN Bo, CAI Yi, . Elastic solution of soil displacement induced by shallow circular tunnel with a cavern in a stratum using function of complex variable method [J]. Rock and Soil Mechanics, 2018, 39(S2): 25-36.
[13] ZHU Ning , ZHOU Yang , LIU Wei, SHI Pei-xin, WU Ben,. Study of silty soil behavior disturbed for installation of diaphragm wall in Suzhou [J]. , 2018, 39(S1): 529-536.
[14] ZHANG Cong, LIANG Jing-wei, ZHANG Jian, YANG Jun-sheng, ZHANG Gui-jin, YE Xin-tian,. Mechanism of Bingham fluid permeation and diffusion based on pulse injection [J]. , 2018, 39(8): 2740-2746.
[15] REN Lian-wei, ZHOU Gui-lin, DUN Zhi-lin, HE Ting-yin, YANG Quan-wei, ZHANG Min-xia,. Case study on suitability and settlement of foundation in goaf site [J]. , 2018, 39(8): 2922-2932.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHEN Shan-xiong,FENG Mei-guo,XU Xi-chang,CHEN Shou-yi. Study of instability process and failure mechanism of ash storage dam in a power plant[J]. , 2009, 30(11): 3365 -3371 .
[2] YIN Xiao-tao, WANG Shui-lin, MA Shuang-ke, LIU Zhi-wen. Study of stability and accumulation mechanism of colluvium affected by change of strength property[J]. , 2010, 31(2): 620 -626 .
[3] TANG Ming-ming, WANG Zhi-yin, MA Lan-ping, ZENG Zhi-hua, ZHANG Zhi-pei. Study of design parameters of oil-gas pipeline traversing loess gully[J]. , 2010, 31(4): 1314 -1318 .
[4] LIAN Chuan-jie, XU Wei-ya, WANG Ya-jie, WANG Zhi-hua. Numerical simulation of entry performance supported by a new high strength and high pretension yieldable bolts[J]. , 2010, 31(7): 2329 -2335 .
[5] XU Fei,XU Wei-ya,WEN Sen,LIU Zao-bao,ZHAO Yan-xi. Projection pursuit based on particle swarm optimization for evaluation of surrounding rock stability[J]. , 2010, 31(11): 3651 -3655 .
[6] YIN Li-hua, WANG Xiao-mou, ZHANG Liu-jun. Probabilistical distribution statistical analysis of Tianjin soft soil indices[J]. , 2010, 31(S2): 462 -469 .
[7] LI Jun-cai,JI Guang-qiang,SONG Gui-hua,ZHANG Qiong,WANG Zhi-liang,YAN Xiao-min. In-situ measurement and analysis of sparse pile-raft foundation of high-rise building[J]. , 2009, 30(4): 1018 -1022 .
[8] QIAN Ji-yun, ZHANG Ga, ZHANG Jian-min. Centrifuge model tests for deformation mechanism of soil slope during rainfall[J]. , 2011, 32(2): 398 -402 .
[9] WANG Lin , YANG Hai-peng , NIE Qing-ke. Numerical simulation for building settlements and its distribution characteristics using engineering analogy[J]. , 2009, 30(S2): 485 -488 .
[10] LU Xiao-bing , ZHANG Xu-hui , CUI Peng. Numerical simulation of clastic grain flow along a slope[J]. , 2009, 30(S2): 524 -527 .