›› 2006, Vol. 27 ›› Issue (3): 482-486.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Mechanical analysis of systematic bolts on rock mass in high side slope at intake of Xiangjiaba Hydropower Station

PENG Zuo-wei, ZHOU Chuang-bing, GONG Yu-feng, KONG Jian   

  1. School of Water Resources and Hydropower, Wuhan University, Wuhan 430072, China
  • Received:2004-01-05 Online:2006-03-10 Published:2013-11-06

Abstract: The maximum height of the intake side slope of Xiangjiaba Hydropower Station is 150 m. Systematic Bolts will be adopted to reinforce the rock mass. Because of the passivity action of systematic bolts and the heterogeneity of rock mass deforming, systematic bolts have different stress in different position. This paper analyzes the systematic bolts’ stresses on rock mass of high side slope of the intake in Xiangjiaba Hydropower Station by using elasto-viscoplastic finite element method. We can find the obvious laws from the calculation results that the bolt stress is larger in the rockmass which has larger displacement than in one which has less displacement. And the bolt stress increases with the excavation and anchorage progresses.

Key words: Xiangjiaba Hydropower Station, high side slope at intake, FEM, systematic bolts, stress

CLC Number: 

  • TU 454
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] KONG Xian-jing, NING Fan-wei, LIU Jing-mao, ZOU De-gao, ZHOU Chen-guang, . Influences of stress paths and saturation on particle breakage of rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(6): 2059-2065.
[2] YANG De-huan, YAN Rong-tao, WEI Chang-fu, PAN Xue-ying, ZHANG Qin, . A method for determining average intergranular stresses in saturated clays [J]. Rock and Soil Mechanics, 2019, 40(6): 2075-2084.
[3] GONG Feng-qiang, WU Wu-xing, LI Tian-bin, SI Xue-feng, . Simulation experimental study of spalling failure of surrounding rock of rectangular tunnel of deep hard rock [J]. Rock and Soil Mechanics, 2019, 40(6): 2085-2098.
[4] LI Jian-peng, GAO Ling, MU Huan-sheng. Dilatancy characteristics of sandstone and its function of dilatancy angle under high confining pressure and unloading conditions [J]. Rock and Soil Mechanics, 2019, 40(6): 2119-2126.
[5] WANG Chen-lin, ZHANG Xiao-dong, DU Zhi-gang, . Experimental study of the permeability of coal specimen with pre-existing fissure under cyclic loading and unloading [J]. Rock and Soil Mechanics, 2019, 40(6): 2140-2153.
[6] ZHAO Zhen-hua, ZHANG Xiao-jun, LI Xiao-cheng, . Experimental study of stress relaxation characteristics of hard rocks with pressure relief hole [J]. Rock and Soil Mechanics, 2019, 40(6): 2192-2199.
[7] CHEN Jian-xu, SONG Wen-wu, . Non-limit active earth pressure for retaining wall under translational motion [J]. Rock and Soil Mechanics, 2019, 40(6): 2284-2292.
[8] YU Guo, XIE Mo-wen, SUN Zi-hao, LIU Peng. Construction of approximation function of normal stress distribution on sliding surface of three-dimensional symmetrical slope based on GIS [J]. Rock and Soil Mechanics, 2019, 40(6): 2332-2340.
[9] WANG Xiang-nan, LI Quan-ming, YU Yu-zhen, YU Jia-lin, LÜ He, . Simulation of the failure process of landslides based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(6): 2435-2442.
[10] JIANG Bing-nan, MA Jian-lin, LI Meng-hao, CHU Jing-lei. Experiments on spatial stress of foot blade during caisson sinking in water [J]. Rock and Soil Mechanics, 2019, 40(5): 1693-1703.
[11] LI Xiu-lei, LI Jin-feng, SHI Jian-yong, . Elastoplastic constitutive model for municipal solid waste considering the effect of fibrous reinforcement [J]. Rock and Soil Mechanics, 2019, 40(5): 1916-1924.
[12] YU Yu, LIU Xin-rong, LIU Yong-quan, . Field experimental investigation on prestress loss law of anchor cable in foundation pits [J]. Rock and Soil Mechanics, 2019, 40(5): 1932-1939.
[13] WANG Feng-yun, QIAN De-ling, . Dilatancy analysis for a circular tunnel excavated in rock mass based on unified strength theory [J]. Rock and Soil Mechanics, 2019, 40(5): 1966-1976.
[14] ZHANG Wei, QU Zhan-qing, GUO Tian-kui, SUN Jiang. Numerical simulation of hydraulic fracturing in hot dry rocks under the influence of thermal stress [J]. Rock and Soil Mechanics, 2019, 40(5): 2001-2008.
[15] YANG Shi-kou, ZHANG Ji-xun, REN Xu-hua, . Study of contact cracks based on improved numerical manifold method [J]. Rock and Soil Mechanics, 2019, 40(5): 2016-2021.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] QIN Hui-lai, HUANG Mao-song, WANG Yu-jie. Application of Monte Carlo search technique to bearing capacity calculations by upper bound method[J]. , 2010, 31(10): 3145 -3150 .
[2] PAN Yue, ZHANG Yong, WANG Zhi-qiang. Catastrophe theoretical analysis of disintegrated outburst of a single coal shell in coal-gas outburst[J]. , 2009, 30(3): 595 -602 .
[3] ZHANG Chun-hui, ZHAO Quan-sheng. Early warning system of mining subsidence damage based on ARCGIS[J]. , 2009, 30(7): 2197 -2202 .
[4] MENG Fan-bing , LIN Cong-mou , CAI li-guang , LI bo. Cumulative damage evaluation of clip rock in small-distance tunnels caused by blasting excavation and its application[J]. , 2011, 32(5): 1491 -1494 .
[5] CUI Wei, SONG Hui-fang, ZHANG She-rong, YAN Shu-wang. Numerical simulation of craters produced by explosion in soil[J]. , 2011, 32(8): 2523 -2528 .
[6] CHEN Ming , HU Ying-guo , LU Wen-bo , YAN Peng , ZHOU Chuang-bing. Blasting excavation induced damage characteristics of diversion tunnel for Jinping cascade II hydropower station[J]. , 2011, 32(S2): 172 -177 .
[7] LIU Zhen , ZHOU Cui-ying. Whole process and law for mechanical coupling evolution of new and old overlapped tunnel systems[J]. , 2012, 33(2): 494 -500 .
[8] ZHANG Zhen-shuan , YANG Shu-biao , ZHANG Tao , LIANG Yao-zhe . Experimental study of seismic behavior of prestressed pipe pile[J]. , 2012, 33(S1): 79 -84 .
[9] ZHANG Hui-le ,MA Lin ,ZHANG Zhi-hao ,SUN Ying-xia . Test research on factors influencing bearing capacity of rock-socketed piles in karst area[J]. , 2013, 34(1): 92 -100 .
[10] FANG Xiang-wei ,SHEN Chun-ni ,WANG Long ,CHEN Zheng-han ,CHENG Pei-jiang . Research on microstructure of Q2 loess before and after wetting[J]. , 2013, 34(5): 1319 -1324 .