›› 2006, Vol. 27 ›› Issue (6): 913-919.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Relation between rock-burst and rock post-peak behavior

WANG Xin-hong1, WANG Ming-yang2   

  1. 1. Second Artillery and Command College, Wuhan 430012, China ; 2. Engineering Institute of Engineering Corps, PLA Univ. of Sci. & Tech., Nanjing 210007, China
  • Received:2004-09-28 Online:2006-06-10 Published:2013-11-14

Abstract: There are some reasons to engender the rock-burst such as the rock post-peak behavior, which is the radical reason, and geological factors, which are exterior. After analyzing the energy releasing and gathering and transferring in surrounding rocks during the excavation in underground projects, it is discovered that the high stress is one of the important factor to engender the rock-burst. Character of engendering the rock-burst in space-time appears in step of plastic intenerated deformation. And the conditions of rock-burst are studied with nonlinear analysis. So the results are that the stability of the rock is connected with the size of the rock and physical characteristic of demolished rock. And the criterions are following the equations, and < .

Key words: rock-burst, high stress, rock post-peak behavior, nonlinear analysis

CLC Number: 

  • TU 94
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] GONG Feng-qiang, WU Wu-xing, LI Tian-bin, SI Xue-feng, . Simulation experimental study of spalling failure of surrounding rock of rectangular tunnel of deep hard rock [J]. Rock and Soil Mechanics, 2019, 40(6): 2085-2098.
[2] GONG Wen-hui, ZHAO Xu-dong, QIU Jin-wei, LI Yi, YANG Han. Nonlinear analysis of one-dimensional consolidation of saturated clay including dead-weight effects and large strain [J]. Rock and Soil Mechanics, 2019, 40(6): 2099-2107.
[3] LI Jian-peng, GAO Ling, MU Huan-sheng. Dilatancy characteristics of sandstone and its function of dilatancy angle under high confining pressure and unloading conditions [J]. Rock and Soil Mechanics, 2019, 40(6): 2119-2126.
[4] WU Qiu-hong, ZHAO Fu-jun, WANG Shi-ming, ZHOU Zhi-hua, WANG Bin, LI Yu, . Mechanical response characteristics of full grouted rock bolts subjected to dynamic loading [J]. Rock and Soil Mechanics, 2019, 40(3): 942-950.
[5] WANG Peng-fei, FENG Guo-rui, ZHAO Jing-li, Yoginder P. Chugh , WANG Zhi-qiang,. Investigation of stress of surrounding rock mass of gob-side entry under gob of a longwall panel [J]. , 2018, 39(9): 3395-3405.
[6] ZHAO Jin-shuai, FENG Xia-ting, WANG Peng-fei, JIANG Quan,CHEN Bing-rui, ZHOU Yang-yi, PEI Shu-feng, . Analysis of microseismic characteristics and fracture mechanism of underground caverns induced by blasting excavation [J]. , 2018, 39(7): 2563-2573.
[7] ZHAO Jin-shuai, FENG Xia-ting , JIANG Quan, CHEN Bing-rui, XIAO Ya-xun,HU Lei, FENG Guang-liang, LI Peng-xiang,. Analysis of microseismic characteristics and stability of underground caverns in hard rock with high stress using framing excavation method [J]. , 2018, 39(3): 1020-1026.
[8] SI Xue-feng, GONG Feng-qiang, LUO Yong, LI Xi-bing, . Experimental simulation on rockburst process of deep three-dimensional circular cavern [J]. , 2018, 39(2): 621-634.
[9] ZHONG Shan, JIANG Quan, FENG Xia-ting, LIU Ji-guang, . A case of in-situ stress measurement in Chinese Jinping underground laboratory [J]. , 2018, 39(1): 356-366.
[10] MENG Qing-bin, HAN Li-jun, ZHANG Fan-ge, ZHANG Jian, NIE Jun-wei, WEN Sheng-yong,. Coupling support effect on high-stress deep soft rock roadway and its application [J]. , 2017, 38(5): 1424-1435.
[11] WU Jing-ke, KAN Jia-guang, XIE Sheng-rong, XIE Fu-xing, CHEN Dong-dong,. Failure mechanisms and control of surrounding rock of deep gob-side entry retaining in soft rock strata under high stress [J]. , 2017, 38(3): 793-800.
[12] XIAO Xiao-chun, DING Xin, ZHAO Xin, PAN Yi-shan, WANG Ai-wen, WANG Lei,. Experimental study on acoustic emission and charge signals during coal failure process at different loading rates [J]. , 2017, 38(12): 3419-3426.
[13] LI Bin, XU Meng-guo, LIU Yan-zhang. Application of critical state confining pressure to rock strength criteria modification [J]. , 2016, 37(2): 390-398.
[14] ZHOU Hui, LU Jing-jing, HU Shan-chao, ZHANG Chuan-qing, XU Rong-chao, MENG Fan-zhen. Influence of curvature radius of tunnels excavation section on slabbing of hard brittle rockmass under high stress [J]. , 2016, 37(1): 140-146.
[15] LIU Ye, JING Fu-xing, FENG Yu. Study of occurrence mechanism and risk analysis of induced rockburst in roadway [J]. , 2015, 36(S2): 201-207.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Bin, LI Shu-cai, LI Shu-chen, ZHONG Shi-hang. Study of advanced detection of water-bearing geological structures with DC resistivity method[J]. , 2009, 30(10): 3093 -3101 .
[2] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[3] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[4] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[5] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[6] LIU Quan-sheng, HU Yun-hua, LIU Bin. Progressive damage constitutive models of granite based on experimental results[J]. , 2009, 30(2): 289 -296 .
[7] WU Ke, LUAN Mao-tian, YANG Qing, FAN Qing-lai, WANG Zhi-yun. Effect of strength heterogeneity of soft clay on failure envelopes of bucket foundation subjected to combined loading[J]. , 2009, 30(3): 779 -784 .
[8] LONG Wan-xue, CHEN Kai-sheng, XIAO Tao, PENG Xiao-ping. Research of general triaxial test for unsaturated red clay[J]. , 2009, 30(S2): 28 -33 .
[9] XING Wan-bo , ZHOU Zhong , TANG Zhong-min , SUN Gang. A new back-analysis method based on ν-SVR and improved PSO algorithm and its application[J]. , 2009, 30(S2): 540 -546 .
[10] WEI Hou-zhen, YAN Rong-tao, WEI Chang-fu, WU Er-lin, CHEN Pan, TIAN Hui-hui. Summary of researches for phase-equilibrium of natural gas hydrates in bearing sediments[J]. , 2011, 32(8): 2287 -2294 .