›› 2006, Vol. 27 ›› Issue (6): 981-985.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Two methods to get the Coulomb earth pressure theory

LI Xing-gao, LIU Wei-ning   

  1. School of Civil and Architectural Engineering, Beijing Jiaotong University, Beijing 100044, China
  • Received:2004-10-13 Online:2006-06-10 Published:2013-11-14

Abstract: The problem of earth pressure is studied by using the limit equilibrium variational method and the Culmann analysis method. In the limit equilibrium variational method, the problem of active earth pressure and passive earth pressure is formulated in terms of calculus of variation based on the two force equilibrium equations of the sliding mass, and is transcribed as the functional extreme-value problem of two undetermined function arguments by means of Lagrange multiplier. According to Euler equations that must be satisfied when a functional attains its extremal, the conclusion that the failure of soil mass behind wall is in the mode of sliding on a plane surface is drawn when the active earth pressure and the passive earth pressure get the minimax solutions. In the Culmann analysis method, the assumption that the soil failure is in the mode of sliding along a plane is adopted; however only one force equilibrium equation along some special direction is utilized to derive the computation formula of earth pressure. Compared with the popular proof process of the Coulomb earth pressure theory, the Culmann analysis method is more simple.

Key words: Coulomb earth pressure theory, calculus of variations, limit equilibrium, Culmann analysis method

CLC Number: 

  • TU 452
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] YU Guo, XIE Mo-wen, SUN Zi-hao, LIU Peng. Construction of approximation function of normal stress distribution on sliding surface of three-dimensional symmetrical slope based on GIS [J]. Rock and Soil Mechanics, 2019, 40(6): 2332-2340.
[2] YU Guo, XIE Mo-wen, ZHENG Zheng-qin, QIN Shi-he, DU Yan, . Research on slope stability calculation method based on GIS [J]. Rock and Soil Mechanics, 2019, 40(4): 1397-1404.
[3] YAN Shu-wang, LI Jia, YAN Yue, CHEN Hao,. Research on stable limit depth of vertical cylinder hole in cohesive soil ground [J]. , 2018, 39(4): 1176-1181.
[4] YANG Ming-hui, DAI Xia-bin, ZHAO Ming-hua, LUO Hong. Calculation of active earth pressure for limited soils with curved sliding surface [J]. , 2017, 38(7): 2029-2035.
[5] LU Kun-lin, WANG Yun-min, ZHU Da-yong,. A method for calculating reinforcing forces of 3D sliding mass and its engineering applications [J]. , 2017, 38(2): 501-506.
[6] DENG Dong-ping, LI Liang. Three-dimensional limit equilibrium method for slope stability based on assumption of stress on slip surface [J]. , 2017, 38(1): 189-196.
[7] LIU Zhen-ping, YANG Bo, LIU Jian, HE Huai-jian,. Three-dimensional limit equilibrium method based on GRASS GIS and TIN sliding surface [J]. , 2017, 38(1): 221-228.
[8] ZHOU Yang-yi, FENG Xia-ting, XU Ding-ping, HE Ming-wu,. A simplified analysis method of block stability in large underground powerhouse [J]. , 2016, 37(8): 2391-2398.
[9] LIU Zi-zhen , YAN Zhi-xin,. Limit equilibrium slice method for unsaturated clay slope under rainfall infiltration [J]. , 2016, 37(2): 350-356.
[10] CHEN Jian-gong , XU Xiao-he , ZHANG Hai-quan , . A variational method for computing of active earth pressure under general conditions [J]. , 2015, 36(S2): 310-314.
[11] SHAO Long-tan, LIU Shi-yi. Extension of limit equilibrium conditions and stability analysis of geotechnical structures [J]. , 2015, 36(S1): 71-75.
[12] DENG Dong-ping, LI Liang. Limit equilibrium analysis of slope stability based on nonlinear unified strength theory [J]. , 2015, 36(9): 2613-2623.
[13] LIU Shuan-qi , LU Kun-lin , ZHU Da-yong , WU Ying-lei , GAN Wen-ning , . A method for calculating the ultimate bearing capacity of a strip footing on the reinforced sand [J]. , 2015, 36(8): 2307-2314.
[14] BAI Bing , YUAN Wei , SHI Lu , LI Jun , LI Xiao-chun,. Comparing a new double reduction method to classic strength reduction method for slope stability analysis [J]. , 2015, 36(5): 1275-1281.
[15] YIN Yong ,ZHOU Guo-qing,. Ultimate load analysis of soft interlayer [J]. , 2015, 36(4): 1035-1040.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Long-hai, WANG Ming-nian, ZHAO Dong-ping, JI Yan-lei. Study of deformation controlling measures for large-span shallow tunnel[J]. , 2010, 31(2): 577 -581 .
[2] CHEN Yu,ZHANG Qing-he,ZHU Ji-wen,YAO Hai-ming. Coupled fluid-mechanical analysis of DOT shield tunnel construction beneath adjacent existing underpass[J]. , 2010, 31(6): 1950 -1955 .
[3] GU Shao-fu, LIU Yang-shao, LIU Shi-shun. Study of application of Asaoka method to settlement prediction[J]. , 2010, 31(7): 2238 -2240 .
[4] FU Ce-jian. Experimental study of mechanical properties of saline silt[J]. , 2010, 31(S1): 193 -197 .
[5] LI Xiong-wei, KONG Ling-wei, GUO Ai-guo. Field response characteristic test of expansive soil engineering behavior under effect of atmosphere[J]. , 2009, 30(7): 2069 -2074 .
[6] SONG Yong-jun , HU Wei , WANG De-sheng , ZHOU Jun-lin. Analysis of squeezing effect of compaction piles based on modified Cam-clay model[J]. , 2011, 32(3): 811 -814 .
[7] SUN De-an,MENG De-lin,SUN Wen-jing,LIU Yue-miao. Soil-water characteristic curves of two bentonites[J]. , 2011, 32(4): 973 -0978 .
[8] WEI Ming-yao, WANG En-yuan, LIU Xiao-fei, WANG Chao. Numerical simulation of rockburst prevention effect by blasting pressure relief in deep coal seam[J]. , 2011, 32(8): 2539 -2543 .
[9] ZHU Yuan-guang,LIU Quan-sheng,ZHANG Cheng-yuan,SHI Kai. Nonlinear viscoelastic creep property of rock with time-temperature equivalence effect[J]. , 2012, 33(8): 2303 -2309 .
[10] HUANG Mao-song ,LI Bo . Analysis of interaction mechanism of flexible raft-piles in layered soils under repeated loading[J]. , 2012, 33(8): 2388 -2394 .