›› 2006, Vol. 27 ›› Issue (S1): 497-500.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study on uniaxial compressive strength of Shanghai soils under secondary freeze-thaw action

XIAO Zhong-hua1,2,HU Xiang-dong1,2,PI Ai-ru3,LIU Rui-feng1,2   

  1. 1. Department of Geotechnical Engineering Tongji, Key Laboratory of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. Department of Civil Engineering, Anhui Institute of Architecture& Industry, Hefei 230022, China
  • Received:2006-03-27 Published:2006-12-15

Abstract: With the development of underground space in Shanghai, the ground freezing method is more and more widely used in tunnel construction. In order to avoid the problems of geological disaster which may happen in the freezing construction, it is necessary to do more researches on the physico-mechanical characters of Shanghai soft soil under freezing and thawing action. The characters of three kinds of soils from a certain project in different states (original state, freeze-thaw state, secondary freeze-thaw), are stadied; and the change rules of soil characters under secondary freeze-thaw action are educed. The results will be beneficial to the safety of the tunnel construction.

Key words: freezing method, secondary freeze-thaw, frozen soil, uniaxial compressive strength

CLC Number: 

  • TU 445
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] TIAN Jun, LU Gao-ming, FENG Xia-ting, LI Yuan-hui, ZHANG Xi-wei. Experimental study of the microwave sensitivity of main rock-forming minerals [J]. Rock and Soil Mechanics, 2019, 40(6): 2066-2074.
[2] WANG Qi , SUN Hui-bin , JIANG Bei , GAO Song , LI Shu-cai , GAO Hong-ke, . A method for predicting uniaxial compressive strength of rock mass based on digital drilling test technology and support vector machine [J]. Rock and Soil Mechanics, 2019, 40(3): 1221-1228.
[3] LI Xin, LIU En-long, HOU Feng, . A creep constitutive model for frozen soils considering the influence of temperature [J]. Rock and Soil Mechanics, 2019, 40(2): 624-631.
[4] LE Hui-lin, SUN Shao-rui. Effect of grouting materials and inclination angle of pre-existing flaw on uniaxial compressive strength and failure mode of rock-like specimens [J]. , 2018, 39(S1): 211-219.
[5] CAO Shuai, SONG Wei-dong, XUE Gai-li,. Experimental study of long-term mechanical strength of cemented tailings backfill considering effect of filling interval time and solid content [J]. , 2018, 39(S1): 341-347.
[6] SHI Quan-bin, YANG Ping, YU Ke, TANG Guo-yi,. Sub peak adfreezing strength at the interface between frozen soil and structures [J]. , 2018, 39(6): 2025-2034.
[7] HUANG Shi-bing, LIU Quan-sheng, CHENG Ai-ping, LIU Yan-zhang, . A coupled hydro-thermal model of fractured rock mass under low temperature and its numerical analysis [J]. , 2018, 39(2): 735-744.
[8] ZHANG Jin-xun, YANG Hao, SHAN Ren-liang, SUI Shun-meng, XUE Dong-chao,. Experimental research on triaxial compressive strength of frozen saturated sandy gravel [J]. , 2018, 39(11): 3993-4000.
[9] QIU Hao-miao, XIA Tang-dai, ZHENG Qing-qing, ZHOU Fei,. Parametric studies of body waves propagation in saturated frozen soil [J]. , 2018, 39(11): 4053-4062.
[10] ZHANG Xiang-dong, LI Jun, SUN Qi, YI Fu, QU Zhi,. Study on dynamic damage mechanism of frozen soil based on elastic modulus degradation [J]. , 2018, 39(11): 4149-4156.
[11] HOU Xin, MA Wei, LI Guo-yu, MU Yan-hu, ZHOU Zhi-wei, WANG Fei,. Influence of lignosulfonate on mechanical properties of Lanzhou loess [J]. , 2017, 38(S2): 18-26.
[12] CHEN Zhi-xiang, LI Shun-qun, XIA Jin-hong, ZHANG Xun-cheng, GUI Chao,. Calculation of frozen soil thermal parameters considering unfrozen water content [J]. , 2017, 38(S2): 67-74.
[13] CHEN Shi-jie, MA Wei, LI Guo-yu, LIU En-long, ZHANG Ge, . Development and application of triaxial apparatus of frozen soil used in conjunction with medical CT [J]. , 2017, 38(S2): 359-367.
[14] LU Hong-jian ,LIANG Peng,GAN De-qing,ZHANG Song-lin,. Research on flow sedimentation law of filling slurry and mechanical characteristics of backfill body [J]. , 2017, 38(S1): 263-270.
[15] YANG Xu, MENG Ying-feng, LI Gao, WANG Liang, LI Cheng,. An empirical equation to estimate uniaxial compressive strength for anisotropic rocks [J]. , 2017, 38(9): 2655-2661.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YIN Xiao-tao, WANG Shui-lin, MA Shuang-ke, LIU Zhi-wen. Study of stability and accumulation mechanism of colluvium affected by change of strength property[J]. , 2010, 31(2): 620 -626 .
[2] ZHANG Chun-hui, ZHAO Quan-sheng, YU Yong-jiang. Probability model of heterogeneous coal considering correlation of mechanical parameters[J]. , 2011, 32(2): 564 -570 .
[3] HUANG Guang-long,ZHANG Feng,WEI Min,FANG Qian. Analysis and treatment of dangerous status of a deep foundation pit in soft clay[J]. , 2009, 30(6): 1735 -1746 .
[4] NIU Wen-jie,YE Wei-min,LIU Shao-gang,YU Hai-tao. Limit analysis of a soil slope considering saturated-unsaturated seepage[J]. , 2009, 30(8): 2477 -2482 .
[5] XIAO Zheng-xue, GUO Xue-bin, ZHANG Ji-chun, PU Chuan-jin, XIAO Ding-jun. Numerical simulation and test of lamination effect caused by blasting in layered rock slope with weak intercalated layer[J]. , 2009, 30(S1): 15 -18 .
[6] SUN Yi-zhen, SHAO Long-tan, FAN Zhi-qiang, TIAN Si-lei. Experimental research on Poisson’s ratio of sandy soil[J]. , 2009, 30(S1): 63 -68 .
[7] WANG Ke-liang, LIU Ling, SUI Tong-bo , XU Yun-hai, HU Ting-zheng. Experiment research on anti-shear(cut)performance of dam bedrock-rubber powder modified concrete in-situ[J]. , 2011, 32(3): 753 -756 .
[8] CAO Yu-peng, BIAN Xia, DENG Yong-feng. Solidification of dredged sludge with high water content by new composite additive[J]. , 2011, 32(S1): 321 -0326 .
[9] CHEN Xiao-ping ,HUANG Jing-wu ,YIN Sai-hua ,ZHENG Jian-zhao. Experimental study of strength property of slip zone soils[J]. , 2011, 32(11): 3212 -3218 .
[10] YUE Ying-chun ,GUO Jian-chun . Fluid-solid coupling analysis of reorientation mechanism of refracturing[J]. , 2012, 33(10): 3189 -3193 .