›› 2006, Vol. 27 ›› Issue (S1): 505-510.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental research on microstructrue changes of cohesive soil under triaxial compression

HU Xin1, ZHOU Yu-quan2, HONG Bao-ning1, MIN Zi-chao1   

  1. 1.Research Institute of Geotechnical Engineering, Hohai University, Nanjing 210098, China; 2. Nanjing Municipal Department for Expressways Construction, Nanjing 210008, China
  • Received:2006-05-10 Published:2006-12-15

Abstract: The complex characteristics such as noncontinuity, nonuniformity, anisotropy and uncertainty, which cohesive soils show in macroscopic scale in engineering, are fundamentally dependent on noncontinuity and uncertainty of soil microstructure. Based on the former research and lots of microstructure quantification experiments, we want to obtain variation character of soil microstructure, study change regularities of structural parameters under continuous loads and combine them with macro physico-mechanical behavior of cohesive soils; thus we can explain and grasp the engineering characteristics from soil microstructure.

Key words: cohesive soil, microstructure, loading path, characteristic parameter

CLC Number: 

  • TU 411.92
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] YIN Xiao-meng, YAN E-chuan, WANG Lu-nan, WANG Yan-chao, . Effect of water and microstructure on wave velocity anisotropy of schist and its mechanism [J]. Rock and Soil Mechanics, 2019, 40(6): 2221-2230.
[2] WANG Yu, AI Qian, LI Jian-lin, DENG Hua-feng, . Damage characteristics of sandstone under different influence factors and its unloading failure meso-morphology properties [J]. Rock and Soil Mechanics, 2019, 40(4): 1341-1350.
[3] JIANG Qiang-qiang, LIU Lu-lu, JIAO Yu-yong, WANG Hao, . Strength properties and microstructure characteristics of slip zone soil subjected to wetting-drying cycles [J]. Rock and Soil Mechanics, 2019, 40(3): 1005-1012.
[4] WANG Deng-ke, SUN Liu-tao, WEI Jian-ping, . Microstructure evolution and fracturing mechanism of coal under thermal shock [J]. Rock and Soil Mechanics, 2019, 40(2): 529-538.
[5] DENG Hua-feng, WANG Chen-xi-jie, LI Jian-lin, ZHANG Yin-chai, WANG Wei, ZHANG Heng-bin. Influence mechanism of loading rate on tensile strength of sandstone [J]. , 2018, 39(S1): 79-88.
[6] FU Zi-guo, QIAO Deng-pan, GUO Zhong-lin, LI Ke-gang, XIE Jin-cheng, WANG Jia-xin. A model for calculating strength of ultra-fine tailings cemented hydraulic fill and its application [J]. , 2018, 39(9): 3147-3156.
[7] DENG Hua-feng, ZHANG Heng-bin, LI Jian-lin, WANG Chen-xi-jie, ZHANG Yin-chai, WANG Wei, HU Ya-yun. Effect of water-rock interaction on unloading mechanical properties and microstructure of sandstone [J]. , 2018, 39(7): 2344-2352.
[8] WANG Peng, XU Jin-yu, FANG Xin-yu, WANG Pei-xi, LIU Shao-he, WANG Hao-yu,. Water softening and freeze-thaw cycling induced decay of red-sandstone [J]. , 2018, 39(6): 2065-2072.
[9] ZHANG Ting-ting, WANG Ping, LI Jiang-shan, WAN Yong, XUE Qiang, WANG Shi-quan, . Effect of curing time and lead concentration on mechanical properties of lead-contaminated soils stabilized by magnesium phosphate cement [J]. , 2018, 39(6): 2115-2123.
[10] CHEN Bin, ZHOU Le-yi, ZHAO Yan-lin, WANG Zhi-chao, CHAO Dai-jie, JIA Gu-ning,. Relationship between microstructure and shear strength of weak interlayer of red sandstone under dry and wet cycles [J]. , 2018, 39(5): 1633-1642.
[11] LI Ya, LI Shu-zhao, ZHANG Chao. An approach to analyze effects of spudcan penetration of a jack-up rig on adjacent piles in cohesive soils [J]. , 2018, 39(5): 1891-1900.
[12] YAN Shu-wang, LI Jia, YAN Yue, CHEN Hao,. Research on stable limit depth of vertical cylinder hole in cohesive soil ground [J]. , 2018, 39(4): 1176-1181.
[13] HUO Hai-feng, LEI Hua-yang, FENG Xing, WANG Xin-qiang, YAN Xiao-rong,. Correlation analysis of microstructure parameters and strength indices of disturbed clay [J]. , 2018, 39(11): 3949-3956.
[14] PANG Xiao-chao, HUANG Jun-jie, SU Dong, XIAO Wen-hai, GU Wen-tian, LIU bin,. Experimental study on parameters of the hardening soil model for undisturbed granite residual soil in Shenzhen [J]. , 2018, 39(11): 4079-4085.
[15] CUI Meng, LIU Jie, HAN Shang-yu, HONG Bao-ning,. Development and application of microstructure change test system for soil tensile failure process [J]. , 2018, 39(11): 4278-4286.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAN Yun-zhi,KONG Ling-wei,GUO Ai-guo,FENG Xin1,WAN Zhi. Discussion on the compaction degree index of subgrade filled with laterite[J]. , 2010, 31(3): 851 -855 .
[2] FU Yu-hua, LI Xi-bing, DONG Long-jun. Analysis of smooth blasting parameters for tunnels in deep damaged rock mass[J]. , 2010, 31(5): 1420 -1426 .
[3] CHANG Lin-yue, WANG Jin-chang, ZHU Xiang-rong, TONG Lei. Analytical elastoplastic solutions of laterally loaded long piles[J]. , 2010, 31(10): 3173 -3178 .
[4] BAI Bing, LI Chun-feng. Elastoplastic dynamic responses of close parallel metro tunnels to vibration loading[J]. , 2009, 30(1): 123 -128 .
[5] PENG Cong-wen,ZHU Xiang-rong,WANG Jin-chang. Preliminary study of two-scale model for analyzing brittle rock based on asymptotic expansion method[J]. , 2011, 32(1): 51 -62 .
[6] CUI Su-li,ZHANG Hu-yuan,LIU Ji-sheng,LIANG Jian. Experimental study of swelling deformation for compacted bentonite-sand mixture as buffer material[J]. , 2011, 32(3): 684 -691 .
[7] ZHANG Jun-hui. Analysis of deformation behavior of expressway widening engineering under different foundation treatments[J]. , 2011, 32(4): 1216 -1222 .
[8] WANG Liang-qing, P.H.S.W. Kulatilake, TANG Hui-ming, LIANG Ye , WU Qiong ,. Kinematic analyses of sliding and toppling failure of double free face rock mass slopes[J]. , 2011, 32(S1): 72 -77 .
[9] LI Lin , CHEN Jie , JIANG De-yi , YANG Chun-he , LIU Chun. Analysis of surface crack growth in layered salt rock under uniaxial compression[J]. , 2011, 32(5): 1394 -1398 .
[10] YANG Wen-jun ,HONG Bao-ning ,ZHOU Bang-gen ,KANG Liang-zhen. Experimental study of improvement properties of rudaceous coal-bearing soil[J]. , 2012, 33(1): 96 -102 .