›› 2006, Vol. 27 ›› Issue (S1): 875-880.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study of ultimate bearing capacity calculation using Meyerhof & Hanna theory

XIAO Hua-ping1,YAN Shu-wang1,SUN Wan-he2   

  1. 1. Shcool of Civil Engineering, Tianjin University, Tianjin 300072, China; 2. Tianjin Port Engineering Institute, Tianjin 300222, China
  • Received:2006-07-26 Published:2006-12-15

Abstract: For the bearing capacity of layered foundations calculated by Meyerhof and Hanna formula, its calculation procedure is refined; and the bearing capacity common model is derivd. The bearing capacity of layered foundation calculated by Meyerhof and Hanna formula is validated by using using the results of in-situ load examination so as to modify the formula. (1) The key step of the formula is to determine the failure plane limit depth, which significantly influenced the result, (2) By the large-scale stress plane in-situ examination, as the layers of soil exceed double, the ultimate bearing capacity of layered foundation calculated by Meyerhof and Hanna formula compared well.

Key words: layered soil, ultimate bearing capacity, load test

CLC Number: 

  • TU 473
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
  • [1] ZONG Zhong-ling, LU Xian-long, LI Qin-song,. Comparison test of compression and uplift on pressure-static and grouting micropiles [J]. , 2018, 39(S1): 362-368.
    [2] BAO Han-ying, CHEN Wen-hua, ZHANG Qian. Propagation of subway vertical vibration in layered soils based on thin layer method and moving coordinate system method [J]. , 2018, 39(9): 3277-3284.
    [3] YIN Jun-fan, LEI Yong, CHEN Qiu-nan, LIU Yi-xin, DENG Jia-zheng,. Upper bound analysis of the punching shear failure of cave roof in karst area [J]. , 2018, 39(8): 2837-2843.
    [4] XIA Chang-qing, HU An-feng, CUI Jun, Lü Wen-xiao, XIE Kang-he, . Analytical solutions for one-dimensional nonlinear consolidation of saturated soft layered soils [J]. , 2018, 39(8): 2858-2864.
    [5] CAO Wen-gui, TAN Jian-hui, HU Wei-dong, . Upper bound of ultimate bearing capacity for the reinforced grounds [J]. , 2018, 39(6): 1955-1962.
    [6] HAN Ze-jun, LIN Gao, ZHOU Xiao-wen, YANG Lin-qing,. Solution and analysis of dynamic stress response for transversely isotropic multilayered soil [J]. , 2018, 39(6): 2287-2294.
    [7] LI Hong-jiang, TONG Li-yuan, LIU Song-yu, BAO Hong-yan, YANG Tao, . Parameter sensitivity of horizontal bearing capacity of large diameter and super-long bored pile [J]. , 2018, 39(5): 1825-1833.
    [8] AI Zhi-yong, ZHANG Yi-fan, WANG Lu-jun, . Extended precise integration solution for plane strain problem of transversely isotropic multilayered soils [J]. , 2018, 39(5): 1885-1890.
    [9] XIONG Hui, JIANG Ya-feng, YU Rong-xia. Lateral vibration impedance of piles embedded in layered soil based on Laplace transform [J]. , 2018, 39(5): 1901-1907.
    [10] LI Xiao-ming, ZHAO Qing-bin, YANG Qi-min, ZHAO Qi-hua, DING Zi-han,. Determination of coefficient m for foundation on a gravel soil-bedrock slope [J]. , 2018, 39(4): 1327-1336.
    [11] ZHOU Ze-lin, CHEN Shou-gen, TU Peng, ZHANG Hai-sheng, . Coupling method for analyzing the influence on existing tunnel due to adjacent foundations pit excavation [J]. , 2018, 39(4): 1440-1449.
    [12] LI Ze, LIU Yi, ZHOU Yu, WANG Jun-xing,. Lower bound analysis of ultimate bearing capacity of stone masonry retaining wall slope using mixed numerical discretisation [J]. , 2018, 39(3): 1100-1108.
    [13] KONG Gang-qiang, PENG Huai-feng, ZHU Xi , GU Hong-wei, ZHOU Li-duo,. Model tests on bearing capacity of longitudinal section shaped pile under lateral load [J]. , 2018, 39(1): 229-236.
    [14] HE Wei-jie, YANG Dong-ying, CUI Zhou-fei. Comparison of theoretical and numerical solution for vertical vibration of a pile considering transverse inertia effect [J]. , 2017, 38(9): 2757-2763.
    [15] XIN Dong-dong, ZHANG Le-wen, SU Chuan-xi. Settlement research of pile groups in layered soils based on virtual soil-pile model [J]. , 2017, 38(8): 2368-2376.
    Viewed
    Full text


    Abstract

    Cited

      Shared   
      Discussed   
    [1] LEI Hua-yang, JIANG Yan, LU Pei-yi, MA Zhan-qiang, SI Jing-cheng. Experimental study of dynamic constitutive relation of structural soft soils under traffic loading[J]. , 2009, 30(12): 3788 -3792 .
    [2] TIAN Qing-yan, LIU Yang-shao, Lü Jian-bing. Correlation study of light dynamic penetration test and cone penetration test in testing coarse sand[J]. , 2009, 30(9): 2747 -2752 .
    [3] CHENG Tao, YAN Ke-qin. Numerical simulation for influences of stress paths on earth's surface deformation[J]. , 2010, 31(2): 661 -666 .
    [4] ZHANG Kun-yong,ZHU Jun-gao,WU Xiao-ming,LI Yong-hong. True triaxial test on clay mixed with gravel under complex stress state[J]. , 2010, 31(9): 2799 -2804 .
    [5] SHEN Lin-chong,ZHONG Xiao-chun,QIN Jian-she,MIN Fan-lu. Determination of minimum thickness of overburden layer for shield tunnel through Qiantang River[J]. , 2011, 32(1): 111 -115 .
    [6] GAO Xiao-juan,LI Jian-hou,WANG Wen-jun,ZHU Xiang-rong. Discussion on formula of vertical bearing capacity of rotated branches pile in Luoyang[J]. , 2009, 30(6): 1676 -1680 .
    [7] ZHAN Ji-yan , CHEN Guo-xing , LIU Jian-da. Seismic response characteristics analysis of deep soft site under far-field ground motion of great earthquake[J]. , 2011, 32(S1): 507 -0514 .
    [8] ZHANG Xiang-dong, FU Qiang. Experimental study of triaxial creep properties of frozen soil and thickness determination of flat frozen soil wall[J]. , 2011, 32(8): 2261 -2266 .
    [9] CUI Wei, SONG Hui-fang, ZHANG She-rong, YAN Shu-wang. Numerical simulation of craters produced by explosion in soil[J]. , 2011, 32(8): 2523 -2528 .
    [10] HU Wei , YIN Zhen-yu , DANO Christophe , HICHER Pierre-yves. Constitutive study of crushable granular materials[J]. , 2011, 32(S2): 159 -165 .