›› 2006, Vol. 27 ›› Issue (S1): 926-930.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Research on distribution of shear stress and length of anchorage end of prestressed cable

HONG Hai-chun1, HU Yi-fu2, LIU Zhi-ming3, CAI Yao-jun3   

  1. 1. Research Institute of Geotechnical Engineering, Hohai University, Nanjing 210098, China; 2. School of Resources and Safety Engineering, Central South University, Changsha 410083, China 3. Changjiang Investigation, Planning and Design Research Institute, Wuhan 430010, China
  • Received:2006-04-28 Published:2006-12-15

Abstract: Model research on distribution regularity of shear stress on anchorage end of prestressed cable is carried out according to half space with concentrated force in normal direction on boundary based on the elastic theory. By analyzing the distribution characteristics of shear stress in practical engineering and field experiment, the distribution regularity of shear stress on anchorage end can be modeled with the introduction to parameter ? which is correlated to prestress, length of anchorage end, rock strength, and cementation strength and parameter ? which is correlated to the position of peak shear stress and the diameter of anchorage end. Ultimate bearing capacity can be calculated according to compression strength ?c and internal friction angle ? of cementation material and the approximately linear inverse proportion relation. Meanwhile, the design length of anchorage Ld multiplied by 2tan? makes the practical length of anchorage end Ls which is calculated by the paper’s method. Finally, two cases calculation and analysis show that the research production is reasonable.

Key words: prestressed cable, distribution of shear stress, length of anchorage end, elastic theory, model research, parameter, ultimate bearing capacity

CLC Number: 

  • TD 352+.5
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] MA Chun-hui, YANG Jie, CHENG Lin, LI Ting, LI Ya-qi, . Adaptive inversion analysis of material parameters of rock-fill dam based on QGA-MMRVM [J]. Rock and Soil Mechanics, 2019, 40(6): 2397-2406.
[2] WANG Yun-jia, SONG Er-xiang. Discrete element analysis of the particle shape effect on packing density and strength of rockfills [J]. Rock and Soil Mechanics, 2019, 40(6): 2416-2426.
[3] WANG Peng-fei, TAN Wen-hui, MA Xue-wen, LI Zi-jian, LIU Jing-jun, WU Yang-fan, . Relationship between strength parameter and water content of fault gouge with different degrees of consolidation [J]. Rock and Soil Mechanics, 2019, 40(5): 1657-1662.
[4] WANG Yu, AI Qian, LI Jian-lin, DENG Hua-feng, . Damage characteristics of sandstone under different influence factors and its unloading failure meso-morphology properties [J]. Rock and Soil Mechanics, 2019, 40(4): 1341-1350.
[5] WANG Juan-juan, HAO Yan-zhou, WANG Tie-hang. Experimental study of structural characteristics of unsaturated compacted loess [J]. Rock and Soil Mechanics, 2019, 40(4): 1351-1357.
[6] XIN Ya-wen, ZHOU Zhi-fang, MA Jun, LI Ming-wei, CHEN Meng, WANG Shan, HU Zun-yue, . A method for determining aquitard hydraulic parameters based on double-tube field test [J]. Rock and Soil Mechanics, 2019, 40(4): 1535-1542.
[7] HU Tian-fei, LIU Jian-kun, WANG Tian-liang, YUE Zu-run, . Effect of freeze-thaw cycles on deformation characteristics of a silty clay and its constitutive model with double yield surfaces [J]. Rock and Soil Mechanics, 2019, 40(3): 987-997.
[8] WANG Qi , SUN Hui-bin , JIANG Bei , GAO Song , LI Shu-cai , GAO Hong-ke, . A method for predicting uniaxial compressive strength of rock mass based on digital drilling test technology and support vector machine [J]. Rock and Soil Mechanics, 2019, 40(3): 1221-1228.
[9] XIONG Zhong-ming, ZHANG Chao, CHEN Xuan. Model test on ground motion parameters of site with fissures under seismic loading [J]. Rock and Soil Mechanics, 2019, 40(2): 421-428.
[10] FANG Jin-jin, FENG Yi-xin, ZHAO Wei-long, WANG Li-ping, YU Yong-qiong, . Nonlinear constitutive model for intact loess in true tri-axial tests [J]. Rock and Soil Mechanics, 2019, 40(2): 517-528.
[11] ZHU Meng-bo, WANG Li-guan, LIU Xiao-ming, PENG Ping-an, ZHAO Jia-xuan. A quality control method for microseismic P-wave phase pickup value based on waveform parameters [J]. Rock and Soil Mechanics, 2019, 40(2): 767-776.
[12] ZHANG Wen-sheng, LUO Qiang, JIANG Liang-wei, LI Ang, . Reliability analysis of soil slope considering moment estimation bias using small sample geotechnical parameters [J]. Rock and Soil Mechanics, 2019, 40(1): 315-324.
[13] CHEN Shang-yuan, ZHAO Fei, WANG Hong-jian, YUAN Guang-xiang, GUO Zhi-biao, YANG Jun, . Determination of key parameters of gob-side entry retaining by cutting roof and its application to a deep mine [J]. Rock and Soil Mechanics, 2019, 40(1): 332-342.
[14] CHEN Lei, ZHAO Xue-sheng, TANG Yi-xian, ZHANG Hong, . Parameters fitting and evaluation of exponent Knothe model combined with InSAR technique [J]. Rock and Soil Mechanics, 2018, 39(S2): 423-431.
[15] DENG Hua-feng, WANG Chen-xi-jie, LI Jian-lin, ZHANG Yin-chai, WANG Wei, ZHANG Heng-bin. Influence mechanism of loading rate on tensile strength of sandstone [J]. , 2018, 39(S1): 79-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao,TANG Hui-ming,LIU Yu. A new model for landslide displacement prediction based on set pair analysis and fuzzy-Markov chain[J]. , 2009, 30(11): 3399 -3405 .
[2] HU Da-wei, ZHOU Hui, XIE Shou-yi, ZHANG Kai, SHAO Jian-fu, FENG. Study of Biot’s coefficients of marble during plastic deformation phase[J]. , 2009, 30(12): 3727 -3732 .
[3] SHI Xu-chao,HAN Yang. Water absorption test of soft clay after rebound under unloading[J]. , 2010, 31(3): 732 -736 .
[4] KONG Ling-wei, ZHOU Bao-chun, BAI Hao1, CHEN Wei. Experimental study of deformation and strength characteristics of Jingmen unsaturated expansive soil[J]. , 2010, 31(10): 3036 -3042 .
[5] LIU Han-long, WANG Xin-quan, CHEN Yong-hui, LU Jian-hua. Field experimental study of mechanical performance of Y-shaped vibro-pile reinforced embankments[J]. , 2009, 30(2): 297 -304 .
[6] YIN Guang-zhi,WANG Deng-ke,ZHANG Dong-ming,WEI Zuo-an. Endchronic damage constitutive model of coal containing gas[J]. , 2009, 30(4): 885 -889 .
[7] ZHANG Zhi-guo, HUANG Mao-song, WANG Wei-dong. Responses of existing tunnels induced by adjacent excavation in soft soils[J]. , 2009, 30(5): 1373 -1380 .
[8] XIAO Ming-zhao,ZHOU Cheng-hao ,CHENG Yun,FENG Xiao-la ,YANG Jun-mei. Application of finite elements and modified simplex method jointed programming technology to displacement back analysis[J]. , 2011, 32(3): 899 -904 .
[9] CAI Hui-teng, WEI Fu-quan, CAI Zong-wen. Study of silty clay dynamic characteristics in Chongqing downtown area[J]. , 2009, 30(S2): 224 -228 .
[10] YAN Qi-xiang,MA Ting-ting,CHEN Fei. Study of influence of water discharge volume on lining external loads for discharge segment lining[J]. , 2011, 32(4): 1108 -1112 .