›› 2007, Vol. 28 ›› Issue (1): 123-126.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Research on crack propagation of mass concrete under effect of longitudinal wave

CHEN Ming, LU Wen-bo   

  1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
  • Received:2005-03-14 Online:2007-01-10 Published:2013-08-28

Abstract: Based on the theory of fracture dynamics, the analysis of the interaction of longitudinal wave and crack, and the dynamic fracture toughness of concrete, the deep or the perfoliate crack propagation of mass concrete under blasting longitudinal wave was studied; the safe peak particle velocity (PPV) for concrete with crack was obtained; and the effect of the frequency and the incidence angle of longitude wave was studied. The result indicated that the lower frequency and the higher incidence angle of longitudinal wave will easily lead to the crack propagation. On condition of frequency at 10 Hz and incidence angle at 90 degree, the safe PPV of concrete with crack is 0.95 cm/s; it is lower than the value on the handbook of construction planning of hydraulic and hydroelectric projects, which is 5 cm/s for concrete gravity dam and concrete sluice board, the concrete with crack is easily been destroyed.

Key words: longitudinal wave, concrete, fracture toughness, blasting vibration, peak particle velocity

CLC Number: 

  • TU 751.9
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
  • [1] ZHANG Sheng, WANG Long-fei, CHANG Xu, WANG Dong-kun, WANG Xiao-liang, QIAO Yang, . Experimental study of size effect of fracture toughness of limestone using the notched semi-circular bend samples [J]. Rock and Soil Mechanics, 2019, 40(5): 1740-1749.
    [2] JI Guo-fa, LI Kui-dong, ZHANG Gong-she, LI Shao-ming, ZHANG Lei, LIU Wei, . Fractal calculation method of model I fracture toughness of shale rock and its application [J]. Rock and Soil Mechanics, 2019, 40(5): 1925-1931.
    [3] GAO Jun, DANG Fa-ning, LI Hai-bin, YANG Chao, REN Jie, . Simplified analytical force analysis model of asphalt concrete core [J]. Rock and Soil Mechanics, 2019, 40(3): 971-977.
    [4] HU Shuai-wei, CHEN Shi-hai, . Analytical solution of dynamic response of rock bolt under blasting vibration [J]. Rock and Soil Mechanics, 2019, 40(1): 281-287.
    [5] ZHANG Lei, LIU Hui, WANG Tie-hang. Shear tests on loess-concrete interface under consolidation and unconsolidation conditions [J]. Rock and Soil Mechanics, 2018, 39(S2): 238-244.
    [6] WU Jian-tao, YE Xiao, LI Guo-wei, JIANG Chao, CAO Xue-shan, . Bearing and deformation behaviors of PHC pile-reinforced soft foundation under high embankment [J]. Rock and Soil Mechanics, 2018, 39(S2): 351-358.
    [7] ZHAO Zi-jiang, LIU Da-an, CUI Zhen-dong, TANG Tie-wu, HAN Wei-ge,. Experimental study of determining fracture toughness KIC of shale by semi-disk three-point bending [J]. , 2018, 39(S1): 258-266.
    [8] WEI Kuang-min , CHEN Sheng-shui, LI Guo-ying, WU Jun-jie, . Influence of contact effect between dam body and dam foundation on behaviours of high concrete faced rockfill dam built in steep valleys [J]. , 2018, 39(9): 3415-3424.
    [9] HUANG Wei, XIE Zhong-shi, YANG Yong-gang, LIU Hong-zhong, YANG Long, WANG Bing-jie, YANG Zhi-hui, CHENG Chao-jie, XIANG Wei, LUO Jin,. Experimental study of deformation properties of reinforced concrete in energy piles under temperature and stress [J]. , 2018, 39(7): 2491-2498.
    [10] ZHAO Kun, CHEN Wei-zhong, ZHAO Wu-sheng, YANG Dian-sen,SONG Wan-peng, LI Can, MA Shao-sen, . Direct shear test and numerical simulation for mechanical characteristics of the contact surface between the lining and shock absorption layer in underground engineering [J]. , 2018, 39(7): 2662-2670.
    [11] CHEN Si-li, LI Yan-yu, ZHOU Hui, HU Da-wei. Three-parameter twin ?2 strength criterion based on ultimate stress ratio and its application [J]. , 2018, 39(6): 1948-1954.
    [12] HUANG Jun-jie, WANG Wei, SU Qian, LI Ting, WANG Xun,. Deformation and failure modes of embankments on soft ground reinforced by plain concrete piles [J]. , 2018, 39(5): 1653-1661.
    [13] ZHAO Wu-sheng, CHEN Wei-zhong, MA Shao-sen, ZHAO Kun, SONG Wan-peng, LI Can,. Isolation effect of foamed concrete layer on the seismic responses of tunnel [J]. , 2018, 39(3): 1027-1036.
    [14] HU He-song, CHEN Xiao-bin, TANG Meng-xiong, LIAO Xiang-ying, XIAO Yuan-jie, . Investigation on shearing failure mechanism for DPC pile-soil interface in large-scale direct shear tests [J]. Rock and Soil Mechanics, 2018, 39(12): 4325-4334.
    [15] LIU Zhi-bin, ZHANG Guang-qing, YAN Xiao-he, YANG Xiao, DONG Hao-ran, XU Sheng-fan,. Effect of low pore pressure zone around crack front on rock fracture properties [J]. , 2017, 38(S2): 75-81.
    Viewed
    Full text


    Abstract

    Cited

      Shared   
      Discussed   
    [1] YANG Guang, SUN Xun, YU Yu-zhen, ZHANG Bing-yin. Experimental study of mechanical behavior of a coarse-grained material under various stress paths[J]. , 2010, 31(4): 1118 -1122 .
    [2] ZHANG Chang-guang,ZHANG Qing-he,ZHAO Jun-hai. Unified solutions of shear strength and earth pressure for unsaturated soils[J]. , 2010, 31(6): 1871 -1876 .
    [3] HAO Dong-xue, CHEN Rong, LUAN Mao-tian, WU Ke. Numerical analysis of SBPT for estimation of undrained shear strength[J]. , 2010, 31(7): 2324 -2328 .
    [4] LEI Hong-jun,LIU Zhong-ge,YU Yu-zhen,Lü He. Experimental study of seepage characteristics of clayey soil-structure interface under large shear deformation[J]. , 2011, 32(4): 1040 -1044 .
    [5] BING Hui , HE Ping. Experimental study of water and salt redistributions of saline soil with different freezing modes[J]. , 2011, 32(8): 2307 -2312 .
    [6] LI Wei-chao, XIONG Ju-hua, YANG Min. Improved method for calculating anti-overturning safety factor of cement-soil retaining wall in layered soil[J]. , 2011, 32(8): 2435 -2440 .
    [7] ZHANG Gui-min , LI Yin-ping , SHI Xi-lin , YANG Chun-he , WANG Li-juan. Research on a model material preparation method for alternate layered rock mass and preliminary experiment[J]. , 2011, 32(S2): 284 -289 .
    [8] DING Zu-de,PENG Li-min,SHI Cheng-hua. Analysis of influence of metro tunnel crossing angles on ground buildings[J]. , 2011, 32(11): 3387 -3392 .
    [9] WANG Hong-xin , SUN Yu-yong . Test study and bar system FEM for foundation pits considering excavation width[J]. , 2012, 33(9): 2781 -2787 .
    [10] ZHANG Le-wen, ZHANG De-yong, LI Shu-cai, QIU Dao-hong. Application of RBF neural network to rockburst prediction based on rough set theory[J]. , 2012, 33(S1): 270 -276 .