›› 2007, Vol. 28 ›› Issue (10): 2052-2054.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

A probabilistic criterion for nonwoven geotextiles retention application

SHE Wei1, 4, CHEN Lun2, WANG Zhao3   

  1. 1. Key Laboratory of Soft Soils and Geoenvironmental Engineering, Ministry of Education (Zhejiang University), Hangzhou 310027, China; 2. Department of Hydraulic and Hydropower Engineering, Tsinghua University, Beijing 100084, China; 3. School of Civil and Architectural Engineering, Wuhan University, Wuhan 430072, China; 4. Shenzhen Investigation & Research Institute Co., LTD, Shenzhen 518026, China
  • Received:2005-10-08 Online:2007-10-10 Published:2013-10-15

Abstract: Retention criterion is an important part of filter criteria for geotextile, however, the prevalent design criteria is too strict for retention of soil particle and not enough for permeability criterion. Two different opening size distribution curves of geotextiles are introduced; and the probability that soil particles pass through nonwoven geotextile is calculated. Based on theoretical analysis, a probabilistic retention criterion is proposed. The new retention criterion restricts the probabilities that both coarse particle and fine particle pass through nonwoven geotextiles; and it can not only keep the stability of soil, but prevent the clogging of geotextile.

Key words: nonwoven geotextile, filtration, opening size distribution curve, probability retention criterion

CLC Number: 

  • TU 472.3+4
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] MO Zhen-ze, WANG Meng-shu, LI Hai-bo, QIAN Yong-jin, LUO Gen-dong, WANG Hui, . Laboratory investigation on pore water pressure variation caused by filter cake effect during slurry-EPB shield tunneling in silty sand layer [J]. Rock and Soil Mechanics, 2019, 40(6): 2257-2263.
[2] CHEN Wen-wu, ZHANG Qi-yong, LIU Hong-wei, . Infiltration grouting diffusion law of SH agent in earthen sites [J]. Rock and Soil Mechanics, 2019, 40(2): 429-435.
[3] WANG Hua-bin, LI Jian-mei, JIN Yi-xuan, ZHOU Bo, ZHOU Yu, . The numerical methods for two key problems in rainfall-induced slope failure [J]. Rock and Soil Mechanics, 2019, 40(2): 777-784.
[4] LIU Jie, HUANG Fei, YANG Yu-nan, YANG Xu. Nondestructive testing of porosity of rock based on capillary infiltration technique [J]. , 2018, 39(3): 1137-1144.
[5] ZHU Cai-hui, GUO Bing-xuan. Monitoring and inducement analysis of seepage of an ancient building base [J]. , 2018, 39(11): 4210-4217.
[6] LIU Zheng-hong, YU Yong-tang, TANG Guo-yi, LIU Zhi, . Permeability tests on Angola Quelo sand [J]. , 2017, 38(S2): 177-182.
[7] KANG Xiao-sen, LIAO Hong-jian, LEN Xian-lun, HAO Dong-rui,. Discussion on ultimate depth of tension cracks of loess slope under infiltration effect [J]. , 2017, 38(S2): 197-202.
[8] LI Shu-cai, FENG Xiao, LIU Ren-tai, ZHANG Le-wen, HAN Wei-wei, ZHENG Zhuo. Diffusion of grouting cement in sandy soil considering filtration effect [J]. , 2017, 38(4): 925-933.
[9] TANG Lin, TANG Xiao-wu, SUN Kai, . Analytical solutions for pore size of nonwoven geotextiles under unequal biaxial tensile strain [J]. , 2017, 38(12): 3597-3603.
[10] ZHENG Jun-jie, GUO Zhen-shan, CUI Lan, ZHANG Jun,. Stability analysis of expansive soil tunnel considering unsaturated seepage and moistening swelling deformation [J]. , 2017, 38(11): 3271-3277.
[11] XIONG Yong-lin, ZHU He-hua, YE Guan-lin, YE Bin,. Analysis of failure of unsaturated soil slope due to rainfall based on soil-water-air seepage-deformation coupling FEM [J]. , 2017, 38(1): 284-290.
[12] ZHANG Jie, Lü Te, XUE Jian-feng, ZHENG Wen-tang,. Modified Green-Ampt model for analyzing rainfall infiltration in slopes [J]. , 2016, 37(9): 2451-2457.
[13] DOU Hong-qiang ,HAN Tong-chun ,GONG Xiao-nan ,LI Zhi-ning,QIU Zi-yi,. Reliability analysis of slope stability considering variability of soil saturated hydraulic conductivity under rainfall infiltration [J]. , 2016, 37(4): 1144-1152.
[14] TIAN Dong-fang ,ZHENG Hong ,LIU De-fu,. 2D FEM numerical simulation of rainfall infiltration for landslide with considering runoff effect and its application [J]. , 2016, 37(4): 1179-1186.
[15] WANG Ding-jian, TANG Hui-ming, LI Chang-dong, GE Yun-feng, YI Xian-long. Stability analysis of colluvial landslide due to heavy rainfall [J]. , 2016, 37(2): 439-445.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUN Yong. Research on calculation method of double-row anti-sliding structure under sliding surface[J]. , 2009, 30(10): 2971 -2977 .
[2] LI Hong-bo,GUO Xiao-hong. Research on calculation metheods of earth pressure on muti-arch tunnel for highway[J]. , 2009, 30(11): 3429 -3434 .
[3] WANG Chuan-ying, HU Pei-liang, SUN Wei-chun. Method for evaluating rock mass integrity based on borehole camera technology[J]. , 2010, 31(4): 1326 -1330 .
[4] TAN Yun-zhi, KONG Ling-wei, GUO Ai-guo, WAN Zhi. Capillary effect of moisture transfer and its numerical simulation of compacted laterite soil[J]. , 2010, 31(7): 2289 -2294 .
[5] WANG Yun-gang, XIONG Kai, LING Dao-sheng. Upper bound limit analysis of slope stability based on translational and rotational failure mechanism[J]. , 2010, 31(8): 2619 -2624 .
[6] XU Zhi-jun, ZHENG Jun-jie, ZHANG Jun, MA Qiang. Application of cluster analysis and factor analysis to evaluation of loess collapsibility[J]. , 2010, 31(S2): 407 -411 .
[7] WANG Hong-liang , FAN Peng-xian , WANG Ming-yang , LI Wen-pei , QIAN Yue-hong. Influence of strain rate on progressive failure process and characteristic stresses of red sandstone[J]. , 2011, 32(5): 1340 -1346 .
[8] LI Jian ,TAN Zhong-sheng ,YU Yu ,NI Lu-su. Research on construction procedure for shallow large-span tunnel undercrossing highway[J]. , 2011, 32(9): 2803 -2809 .
[9] YING Hong-wei , ZHENG Bei-bei , XIE Xin-yu. Study of passive earth pressures against translating rigid retaining walls in narrow excavations[J]. , 2011, 32(12): 3755 -3762 .
[10] MIAO Yu , Lü Jia-he , ZHANG Qing-jun , JIN Xiang-yue , LUO Hui . Cracking mechanism and propagation analysis of asphalt pavement with multi-crack[J]. , 2012, 33(5): 1513 -1518 .