›› 2007, Vol. 28 ›› Issue (2): 269-273.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study on ill-conditioned problems of Biot’s consolidation finite element equations

DING Zhou-xiang1, GONG Xiao-nan2, ZHU he-hua1, CAI Yong-chang1, LI Tian-zhu3, TANG Ya-jiang3   

  1. 1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310027, China; 3. Ningxia Highway Survey and Design Institute, Yinchuan 750004, China
  • Received:2004-10-14 Online:2007-02-10 Published:2013-08-28

Abstract: Aimed at the ill-conditioned problem of Biot’s consolidation finite element method (BCFEM), both orthogonal test and dimensional analysis method are used to study the ill-conditioning regularity and its influencing factors. The influencing factors such as the average size of finite element, the length of timestep, the compressibility of soil and the permeability of soil are taken into account. Two groups of independent similarity criteria are proposed, on the basis of which, two novel dimensionless variables are obtained to analyze the variation of the condition number of BCFEM coefficient matrix. Through the parametric study of an illustrative case, the results show that the average size of finite element, the length of timestep, the compressibility of soil and the permeability of soil are in the order of priority of sensitivity. The smaller the averaged size of finite element, the worse the ill-conditioning situation of BCFEM. With the increase of the presented dimensionless variables, the ill-conditioning number shows a tendency to increasing, etc. The conclusions are helpful to study the ill-conditioned problem of BCFEM.

Key words: Biot’s consolidation theory, finite element method, ill-conditioned problem, orthogonal test, dimensional analysis

CLC Number: 

  • TB 115
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
  • [1] WANG Xiang-nan, LI Quan-ming, YU Yu-zhen, YU Jia-lin, LÜ He, . Simulation of the failure process of landslides based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(6): 2435-2442.
    [2] QIU Min, YUAN Qing, LI Chang-jun, XIAO Chao-chao, . Comparative study of calculation methods for undrained shear strength of clay based on cavity expansion theory [J]. Rock and Soil Mechanics, 2019, 40(3): 1059-1066.
    [3] ZHENG An-xing, LUO Xian-qi, CHEN Zhen-hua, . Hydraulic fracturing coupling model of rock mass based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(2): 799-808.
    [4] SONG Jia, GU Quan, XU Cheng-shun, DU Xiu-li,. Implementation of fully explicit method for dynamic equation of saturated soil in OpenSees [J]. , 2018, 39(9): 3477-3485.
    [5] SONG Jia, DU Xiu-li, XU Cheng-shun, SUN Bao-yin,. Research on the dynamic responses of saturated porous media-pile foundation-superstructure system [J]. , 2018, 39(8): 3061-3070.
    [6] ZHANG Chen, CAI Zheng-yin, XU Guang-ming, HUANG Ying-hao,. Dimensional analysis of centrifugal modeling of frozen soil [J]. , 2018, 39(4): 1236-1244.
    [7] LI Ning, GUO Shuang-feng, YAO Xian-chun,. Further study of stability analysis methods of high rock slopes [J]. , 2018, 39(2): 397-406.
    [8] LUO Xian-qi, ZHENG An-xing,. Application of extended finite element method in modelling fracture of rock mass [J]. , 2018, 39(2): 728-734.
    [9] LIU Zhong-yu, ZHANG Jia-chao, ZHENG Zhan-lei, GUAN Cong. Finite element analysis of two-dimensional Biot’s consolidation with Hansbo’s flow [J]. Rock and Soil Mechanics, 2018, 39(12): 4617-4626.
    [10] YAO Nan, YE Yi-cheng, WANG Qi-hu, YUE Zhe, LUO Bin-yu, . Study on influence of stability of gently inclined stope roof based on dimensional analysis [J]. , 2018, 39(11): 4232-4241.
    [11] LIU Zhen-ping, DU Gen-ming, CAI Jie, ZHOU Fan, LIU Jian, BIAN Kang,. Seamless coupling method of 3DGIS combined with 3DFEM simulation based on MeshPy [J]. , 2018, 39(10): 3841-3852.
    [12] TU Yi-liang, LIU Xin-rong, ZHONG Zu-liang, DU Li-bing, WANG Peng, . The unity of three types of slope failure criteria [J]. , 2018, 39(1): 173-180.
    [13] YUE Zhe, YE Yi-cheng, WANG Qi-hu, YAO Nan, SHI Yao-bin. A model for calculation of compressive strength of rock-like materials based on dimensional analysis [J]. , 2018, 39(1): 216-221.
    [14] ZOU De-gao, LIU Suo, CHEN Kai, KONG Xian-jing, YU Xiang,. Static and dynamic analysis of seismic response nonlinearity for geotechnical engineering using quadtree mesh and polygon scaled boundary finite element method [J]. , 2017, 38(S2): 33-40.
    [15] HE Wei-jie, YANG Dong-ying, CUI Zhou-fei. Comparison of theoretical and numerical solution for vertical vibration of a pile considering transverse inertia effect [J]. , 2017, 38(9): 2757-2763.
    Viewed
    Full text


    Abstract

    Cited

      Shared   
      Discussed   
    [1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
    [2] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
    [3] YAO Yang-ping,FENG Xing,HUANG Xiang,LI Chun-liang. Application of UH model to finite element analysis[J]. , 2010, 31(1): 237 -245 .
    [4] GAO Yang, ZHANG Qing-song, XU Bang-shu, LI Wei. Study of mining roof abutment pressure distribution law and affecting factors under sea[J]. , 2010, 31(4): 1309 -1313 .
    [5] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
    [6] XING Wan-bo , ZHOU Zhong , TANG Zhong-min , SUN Gang. A new back-analysis method based on ν-SVR and improved PSO algorithm and its application[J]. , 2009, 30(S2): 540 -546 .
    [7] WANG Guo-cui, YANG Min. Nonlinear analysis of laterally loaded piles in sand[J]. , 2011, 32(S2): 261 -267 .
    [8] ZHOU Jian-wu ,LOU Xiao-ming. Analysis of soil heave due to pile-sinking with pre-drilling in soft clay[J]. , 2011, 32(9): 2839 -2844 .
    [9] JI Mao-wei , WU Shun-chuan , GAO Yong-tao , GE Lin-lin , LI Xiao-jing . Construction monitoring and numerical simulation of multi-arch tunnel[J]. , 2011, 32(12): 3787 -3795 .
    [10] ZHANG Bo , LI Shu-cai , YANG Xue-ying , ZHANG Dun-fu , . Uniaxial compression tests on mechanical properties of rock mass similar material with cross-cracks[J]. , 2012, 33(12): 3674 -3679 .