›› 2007, Vol. 28 ›› Issue (4): 728-732.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Numerical analysis of means for reducing differential settlements of primary subway’s modification work in Tianjin

ZHENG Gang, PEI Ying-jie   

  1. School of Civil Engineering, Tianjin University, Tianjin 300072, China
  • Received:2005-05-25 Online:2007-04-10 Published:2013-09-05

Abstract: The modification work of the subway #1 in Tianjin is the project reconstructed the stations and some tubes on the base of primary subway. The differential settlement at the juncture of new and old tubes must be controlled strictly for the sake of safety. The technique of high-pressure chemical churning piles is employed to consolidate the foundation. The consolidating means and thickness are determined by the result of FEM; by contrast to the measured data in-situ, the result of numerical calculation is testified to be proper and the design proposal is rational accordingly.

Key words: differential settlement, high-pressure chemical churning pile, foundation improvement, numerical analysis, finite element method, in-situ measurement

CLC Number: 

  • TU 433
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] ZHANG Zhi-guo, ZHANG Rui, HUANG Mao-song, GONG Jian-fei, . Optimization analysis of pile group foundation based on differential settlement control and axial stiffness under vertical loads [J]. Rock and Soil Mechanics, 2019, 40(6): 2354-2368.
[2] WANG Xiang-nan, LI Quan-ming, YU Yu-zhen, YU Jia-lin, LÜ He, . Simulation of the failure process of landslides based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(6): 2435-2442.
[3] QIU Min, YUAN Qing, LI Chang-jun, XIAO Chao-chao, . Comparative study of calculation methods for undrained shear strength of clay based on cavity expansion theory [J]. Rock and Soil Mechanics, 2019, 40(3): 1059-1066.
[4] LI Ning, YANG Min, LI Guo-feng. Revisiting the application of finite element method in geotechnical engineering [J]. Rock and Soil Mechanics, 2019, 40(3): 1140-1148.
[5] ZHENG Li-ming, ZHANG Yang-yang, LI Zi-feng, MA Ping-hua, YANG Xin-jun, . Analysis of seepage changes during poroelastic consolidation process with porosity and pressure variation under low-frequency vibration [J]. Rock and Soil Mechanics, 2019, 40(3): 1158-1168.
[6] ZHENG An-xing, LUO Xian-qi, CHEN Zhen-hua, . Hydraulic fracturing coupling model of rock mass based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(2): 799-808.
[7] WANG Jian-jun, CHEN Fu-quan, LI Da-yong. A simple solution of settlement for low reinforced embankments on Kerr foundation [J]. Rock and Soil Mechanics, 2019, 40(1): 250-259.
[8] SONG Jia, GU Quan, XU Cheng-shun, DU Xiu-li,. Implementation of fully explicit method for dynamic equation of saturated soil in OpenSees [J]. , 2018, 39(9): 3477-3485.
[9] SONG Jia, DU Xiu-li, XU Cheng-shun, SUN Bao-yin,. Research on the dynamic responses of saturated porous media-pile foundation-superstructure system [J]. , 2018, 39(8): 3061-3070.
[10] LAI Feng-wen, CHEN Fu-quan, WAN Liang-long,. Vertical stress calculation of shallow foundations based on partially developed soil arching effect [J]. , 2018, 39(7): 2546-2554.
[11] YAN Shu-wang, LI Jia, YAN Yue, CHEN Hao,. Research on stable limit depth of vertical cylinder hole in cohesive soil ground [J]. , 2018, 39(4): 1176-1181.
[12] ABI ERDI, ZHENG Ying-ren, FENG Xia-ting, CONG Yu. Relationship between particle micro and macro mechanical parameters of parallel-bond model [J]. , 2018, 39(4): 1289-1301.
[13] LI Ning, GUO Shuang-feng, YAO Xian-chun,. Further study of stability analysis methods of high rock slopes [J]. , 2018, 39(2): 397-406.
[14] LUO Xian-qi, ZHENG An-xing,. Application of extended finite element method in modelling fracture of rock mass [J]. , 2018, 39(2): 728-734.
[15] LIU Zhong-yu, ZHANG Jia-chao, ZHENG Zhan-lei, GUAN Cong. Finite element analysis of two-dimensional Biot’s consolidation with Hansbo’s flow [J]. Rock and Soil Mechanics, 2018, 39(12): 4617-4626.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[2] DONG Cheng, ZHENG Ying-ren, CHEN Xin-ying, TANG Xiao-song. Research on composite support pattern of soil nails and prestressed anchors in deep foundation pits[J]. , 2009, 30(12): 3793 -3796 .
[3] MA Wen-tao. Forecasting slope displacements based on grey least square support vector machines[J]. , 2010, 31(5): 1670 -1674 .
[4] SHEN Yin-bin, ZHU Da-yong, WANG Peng-cheng, YAO Hua-yan. Critical slip field of slopes based on numerical stress field[J]. , 2010, 31(S1): 419 -423 .
[5] WANG Xie-qun,ZHANG You-xiang,ZOU Wei-lie,XIONG Hai-fan. Numerical simulation for unsaturated road-embankment deformation and slope stability under rainfall infiltration[J]. , 2010, 31(11): 3640 -3644 .
[6] WANG Hai-bo,XU Ming,SONG Er-xiang. A small strain constitutive model based on hardening soil model[J]. , 2011, 32(1): 39 -43 .
[7] CHEN Xiang-hao,DENG Jian-hui,CHEN Ke-wen,ZHENG Jun,MENG Fan-li,XU Liang. Stress monitoring and analysis of gravelly soil corewall in high rockfill dam during construction[J]. , 2011, 32(4): 1083 -1088 .
[8] CAO Guang-xu, SONG Er-xiang, XU Ming. Simplified calculation methods of post-construction settlement of high-fill foundation in mountain airport[J]. , 2011, 32(S1): 1 -5 .
[9] LIU Hua-li , ZHU Da-yong , QIAN Qi-hu , LI Hong-wei. Analysis of three-dimensional end effects of slopes[J]. , 2011, 32(6): 1905 -1909 .
[10] ZOU Fei1, 2,LI Hai-bo ,ZHOU Qing-chun ,MO zhen-ze ,ZHU Xiao-ming ,NIU Lei ,YANG Feng-wei . Experimental study of influence of joint space and joint angle on rock fragmentation by TBM disc cutter[J]. , 2012, 33(6): 1640 -1646 .