›› 2007, Vol. 28 ›› Issue (5): 861-864.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Searching method for critical slip surface in rock slope based on theory of critical slip field

DUAN Rong-fu, BAI Shi-wei   

  1. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2005-06-08 Online:2007-05-10 Published:2013-09-10

Abstract: Critical slip surface search is one of key problems in slope stability analysis. Present search methods include mathematic programming methods and brainpower search methods, which are based on the assumption of arc or arc-polyline slide style, and developed on basis of soil slope. It is not fit for rock slope. Critical slip field theory is based on residual thrust method and optimization theory. Useing new structure surface processing method, it can calculate the biggest residual thrust field, which is almost consistent with actual condition and easily search slip surface of respectively possible exits. Therefore, it can find the whole slope critical slip surface. First of all, using example of homogeneous material slope validates credibility of calculation result to be consistent with the result of shear strength reduction technique and the Spencer's precedure of limit equilibrium. Then, an example of open strip mine side slope is given to validate the practicability of this method.

Key words: critical slip field, structural surface, rock slope, critical slip surface

CLC Number: 

  • TU 435
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] WU Guan-ye, ZHENG Hui-feng, XU Jian-rong. Model test study of stability and failure mechanism of three-dimensional complicated block system slope with deeply reinforcement [J]. Rock and Soil Mechanics, 2019, 40(6): 2369-2378.
[2] ZHU Ren-jie, CHE Ai-lan, YAN Fei, WEN Hai, GE Xiu-run, . Dynamic evolution of rock slope with connective structural surface [J]. Rock and Soil Mechanics, 2019, 40(5): 1907-1915.
[3] JIANG Shui-hua, LIU Xian, YAO Chi, YANG Jian-hua, HUANG Jin-song, JIANG Xian-he,. System reliability analysis of rock slopes at low probability levels [J]. , 2018, 39(8): 2991-3000.
[4] XIAO Guo-feng, CHEN Cong-xing. Simulation of progressive failure process and stability analysis method for rock block [J]. , 2018, 39(8): 3001-3010.
[5] BIAN Kang, LIU Jian, HU Xun-jian, LI Peng-cheng, CHEN Ling-zhu, LIU Zhen-ping, . Study on failure mode and dynamic response of rock slope with non-persistent joint under earthquake [J]. , 2018, 39(8): 3029-3037.
[6] XU Ming, TANG Ya-feng, LIU Xian-shan, LUO Bin, TANG Dao-yong,. Seismic dynamic response of rock slope anchored with adaptive anchor cables [J]. , 2018, 39(7): 2379-2386.
[7] YAN Min-jia, XIA Yuan-you, LIU Ting-ting. Limit analysis of bedding rock slopes reinforced by prestressed anchor cables under seismic loads [J]. , 2018, 39(7): 2691-2698.
[8] WEN Shu-jie, LIANG Chao, SONG Liang-liang, LIU Gang,. Search strategy of three-dimensional critical slip surface based on minimum potential energy [J]. , 2018, 39(7): 2708-2714.
[9] YANG Ying, XU Nu-wen, LI Tao, DAI Feng, FAN Yi-lin, XU Jian, LI Biao,. Stability analysis of left bank rock slope at Baihetan hydropower station based on RFPA3D software and microseismic monitoring [J]. , 2018, 39(6): 2193-2202.
[10] ZHOU Yong, WANG Xu-ri, ZHU Yan-peng, LI Jing-bang, JIANG Xiao-kui,. Monitoring and numerical simulation of an interbedding high slope composed of soft and hard strong-weathered rock [J]. , 2018, 39(6): 2249-2258.
[11] LI Ning, GUO Shuang-feng, YAO Xian-chun,. Further study of stability analysis methods of high rock slopes [J]. , 2018, 39(2): 397-406.
[12] LI Tao, XU Nu-wen, DAI Feng, LI Tian-bin, FAN Yi-lin, LI Biao,. Stability analysis of left bank abutment slope at Baihetan hydropower station subjected to excavation [J]. , 2018, 39(2): 665-674.
[13] XU Nu-wen, LI Tao, DAI Feng, LI Biao, FAN Yi-lin, XU Jian,. Stability analysis on the left bank slope of Baihetan hydropower station based on discrete element simulation and microseismic monitoring [J]. , 2017, 38(8): 2358-2367.
[14] NIE Zhi-bao, ZHENG Hong, ZHANG Tan. Determination of slope critical slip surfaces using strength reduction method and wavelet transform [J]. , 2017, 38(6): 1827-1831.
[15] ZHANG Kun, XU Qing, WANG Yi-fan, A Hu-bao. Application of self-adaptive differential evolution algorithm in searching for critical slip surface of slope [J]. , 2017, 38(5): 1503-1509.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CUI Hao-dong, ZHU Yue-ming. Back analysis of seepage field of Ertan high arch dam foundation[J]. , 2009, 30(10): 3194 -3199 .
[2] YANG Zi-you, GU Jin-cai, YANG Ben-shui, CHEN An-min, XU Jing-mao. Numerical analysis of reinforcement effects and response to dynamic loads characteristics of rock bolts[J]. , 2009, 30(9): 2805 -2809 .
[3] ZHAO Hong-bao, YIN Guang-zhi, LI Xiao-shuang. Experimental study of characteristics of tensile burned gritstone[J]. , 2010, 31(4): 1143 -1146 .
[4] WU Huo-zhen, FENG Mei-guo, JIAO Yu-yong, LI Hai-bo. Analysis of sliding mechanism of accumulation horizon landslide under rainfall condition[J]. , 2010, 31(S1): 324 -329 .
[5] YAN Ke-zhen, LIU Neng-yuan, XIA Tang-dai. Discriminant analysis model for prediction of sand soil liquefaction during earthquake[J]. , 2009, 30(7): 2049 -2052 .
[6] CHEN Zhi-qiang, ZHANG Yong-xing, ZHOU Jian-ying. Experimental study of deep tunnel surrounding rock rockburst proneness with similarity material simulating method based on digital speckle correlation technique[J]. , 2011, 32(S1): 141 -148 .
[7] DU Wen-qi, WANG Gang. Statistical analysis of earthquake-induced sliding displacements of earth structures[J]. , 2011, 32(S1): 520 -0525 .
[8] WEI Hou-zhen, YAN Rong-tao, CHEN Pan, TIAN Hui-hui, WU Er-lin, WEI Chang-fu. Deformation and failure behavior of carbon dioxide hydrate-bearing sands with different hydrate contents under triaxial shear tests[J]. , 2011, 32(S2): 198 -203 .
[9] ZHANG Le-wen , ZHANG De-yong , QIU Dao-hong. Application of radial basis function neural network to geostress field back analysis[J]. , 2012, 33(3): 799 -804 .
[10] ZHONG Sheng ,WANG Chuan-ying ,WU Li-xin ,TANG Xin-jian ,WANG Qing-yuan. Borehole radar response characteristics of point unfavorable geo-bodies: forward simulation of its surrounding rock and filling condition[J]. , 2012, 33(4): 1191 -1195 .