›› 2007, Vol. 28 ›› Issue (S1): 137-143.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Mathematical modelling of thermo-hydro-mechanical behaviour for concrete under elevated temperature

SHEN Xin-pu1, SHEN Guo-xiao2, LIU Ji-hang1   

  1. 1. College of Architectural Engineering, Shenyang University of Technology, Shenyang 110023, China; 2. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200030, China)
  • Received:2007-03-14 Online:2007-10-25 Published:2014-03-28

Abstract: A hydro-thermo-mechanical model is presented for concrete at elevated temperature. Three phases of continuum were adopted in this model: gaseous mixture of water vapor and dry air, liquid water, and solid skeleton of concrete. Mass conservation equations, linear momentum conservation equation, and energy conservation equation are derived on the basis of the macroscopic Navier-Stokes equations for a general continuum, along with assumptions made for the purpose of simplification. Mathematical relationships between selected primary variables and secondary variables are given with existing data from references. Specifications of the constitutive relations are made for the kinetic variables and their conjugate forces. Consequently a set of governing partial differential equations are obtained.

Key words: concrete, moisture movement, elevated temperature, multi-phase continuum, coupling.

CLC Number: 

  • O342
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] GAO Jun, DANG Fa-ning, LI Hai-bin, YANG Chao, REN Jie, . Simplified analytical force analysis model of asphalt concrete core [J]. Rock and Soil Mechanics, 2019, 40(3): 971-977.
[2] ZHANG Lei, LIU Hui, WANG Tie-hang. Shear tests on loess-concrete interface under consolidation and unconsolidation conditions [J]. Rock and Soil Mechanics, 2018, 39(S2): 238-244.
[3] WU Jian-tao, YE Xiao, LI Guo-wei, JIANG Chao, CAO Xue-shan, . Bearing and deformation behaviors of PHC pile-reinforced soft foundation under high embankment [J]. Rock and Soil Mechanics, 2018, 39(S2): 351-358.
[4] WEI Kuang-min , CHEN Sheng-shui, LI Guo-ying, WU Jun-jie, . Influence of contact effect between dam body and dam foundation on behaviours of high concrete faced rockfill dam built in steep valleys [J]. , 2018, 39(9): 3415-3424.
[5] HUANG Wei, XIE Zhong-shi, YANG Yong-gang, LIU Hong-zhong, YANG Long, WANG Bing-jie, YANG Zhi-hui, CHENG Chao-jie, XIANG Wei, LUO Jin,. Experimental study of deformation properties of reinforced concrete in energy piles under temperature and stress [J]. , 2018, 39(7): 2491-2498.
[6] ZHAO Kun, CHEN Wei-zhong, ZHAO Wu-sheng, YANG Dian-sen,SONG Wan-peng, LI Can, MA Shao-sen, . Direct shear test and numerical simulation for mechanical characteristics of the contact surface between the lining and shock absorption layer in underground engineering [J]. , 2018, 39(7): 2662-2670.
[7] CHEN Si-li, LI Yan-yu, ZHOU Hui, HU Da-wei. Three-parameter twin ?2 strength criterion based on ultimate stress ratio and its application [J]. , 2018, 39(6): 1948-1954.
[8] HUANG Jun-jie, WANG Wei, SU Qian, LI Ting, WANG Xun,. Deformation and failure modes of embankments on soft ground reinforced by plain concrete piles [J]. , 2018, 39(5): 1653-1661.
[9] ZHAO Wu-sheng, CHEN Wei-zhong, MA Shao-sen, ZHAO Kun, SONG Wan-peng, LI Can,. Isolation effect of foamed concrete layer on the seismic responses of tunnel [J]. , 2018, 39(3): 1027-1036.
[10] HU He-song, CHEN Xiao-bin, TANG Meng-xiong, LIAO Xiang-ying, XIAO Yuan-jie, . Investigation on shearing failure mechanism for DPC pile-soil interface in large-scale direct shear tests [J]. Rock and Soil Mechanics, 2018, 39(12): 4325-4334.
[11] XIAO Jie, QU Wen-jun, ZHU Peng, TIAN Jing-bo,. Experimental study of interface shear behaviors between sand and concrete corroded by sulfuric acid [J]. , 2017, 38(9): 2613-2620.
[12] LIU Han-long, LIU Yan-chen, YANG Gui, WANG Jian-xin,. Experimental studies of concrete-rockfill combination dam on alluvium deposit [J]. , 2017, 38(3): 617-622.
[13] CHENG Yong-feng, ZHENG Wei-feng, LU Xian-long, MENG Xian-zheng. Research on criteria to define bottom area of assembled foundation of transmission line in calculation of compressive load [J]. , 2016, 37(S1): 477-481.
[14] WANG He , YANG Guang-qing , XIONG Bao-lin , WU Lian-hai , LIU Hua-bei,. An experimental study of the structural behavior of reinforced soil retaining wall with concrete-block panel [J]. , 2016, 37(2): 487-498.
[15] YE Guan-bao , ZHANG Qing-wen , ZHANG Zhen , . Consolidation analysis of concrete-cored sand-gravel piles improved composite foundation under combined vacuum and surcharge preloading [J]. , 2016, 37(12): 3356-3364.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAN Yun-zhi,KONG Ling-wei,GUO Ai-guo,FENG Xin1,WAN Zhi. Discussion on the compaction degree index of subgrade filled with laterite[J]. , 2010, 31(3): 851 -855 .
[2] JIE Ying, TANG Xiao-wei , LUAN Mao-tian. Finite-element free Galerkin coupling method for sand liquefaction-induced deformation[J]. , 2010, 31(8): 2643 -2647 .
[3] HU Ming-jian, WANG Ren, CHEN Zhong-xue, WANG Zhi-bing. Initiation process simulation of debris deposit based on particle flow code[J]. , 2010, 31(S1): 394 -397 .
[4] LIU Yang, ZHAO Ming-jie. Theoretical model research on relationship between ultrasonic and stress of rock based on fractals and damage theory[J]. , 2009, 30(S1): 47 -52 .
[5] REN Zhong, Sheng Qian. Study on the disciplinary structure and its evolution of rock mechanics in China[J]. , 2009, 30(S1): 293 -298 .
[6] ZHANG Jun-hui. Analysis of deformation behavior of expressway widening engineering under different foundation treatments[J]. , 2011, 32(4): 1216 -1222 .
[7] WANG Liang-qing, P.H.S.W. Kulatilake, TANG Hui-ming, LIANG Ye , WU Qiong ,. Kinematic analyses of sliding and toppling failure of double free face rock mass slopes[J]. , 2011, 32(S1): 72 -77 .
[8] LI Xu, ZHANG Li-min, AO Guo-dong. Variations of pore structure, void ratio, and water content in soil drying process[J]. , 2011, 32(S1): 100 -105 .
[9] DENG Hua-feng, LI Jian-lin, LIU Jie, ZHU Min, GUO Jing, LU Tao. Research on propagation of compression shear fracture in rocks considering fissure water pressure[J]. , 2011, 32(S1): 297 -0302 .
[10] ZHANG Yi-ping ,WANG Yang ,LI Tao. Study of equivalent elastic parameters of composite foundations[J]. , 2011, 32(7): 2106 -2110 .