›› 2007, Vol. 28 ›› Issue (S1): 263-266.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Numerical simulation research on the formation of shear bands in Shanghai clay

DONG Jian-guo, CHEN Xiang-da, YUAN Ju-yun   

  1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
  • Received:2007-04-30 Online:2007-10-25 Published:2014-03-28

Abstract: Because most project accidents can not be explained by constitutive models in which the localization is not taken into consideration, now the study of localization and the formation of shear band in soil have become an important research field in soil mechanics. Numerical simulation is an important method researching into the formation of shear bands. In this paper, research is done on the condition of the formation of shear bands. Then the formation of shear band in different situations is analyzed by considering the non-homogeneity of soil and introducing weak and strong elements.

Key words: shear bands, localization, Shanghai clay, numerical simulation, weak elements, strong elements

CLC Number: 

  • TU 441
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A nonlinear creep model of rock based on the strain softening index [J]. Rock and Soil Mechanics, 2019, 40(6): 2239-2246.
[2] ZHANG Cong, LIANG Jing-wei, YANG Jun-sheng, CAO Lei, XIE Yi-peng, ZHANG Gui-jin, . Research on the diffusion mechanism and application of pulsate grouting in embankment and dam [J]. Rock and Soil Mechanics, 2019, 40(4): 1507-1514.
[3] YAN Jian, HE Chuan, WANG Bo, MENG Wei, . Influence of high geotemperature on rockburst occurrence in tunnel [J]. Rock and Soil Mechanics, 2019, 40(4): 1543-1550.
[4] LI Shi-jun, MA Chang-hui, LIU Ying-ming, HAN Yu-zhen, ZHANG Bin, ZHANG Ga, . Centrifuge model tests and numerical simulation on progressive failure behavior of slope above a mine-out area [J]. Rock and Soil Mechanics, 2019, 40(4): 1577-1583.
[5] LANG Ying-xian, LIANG Zheng-zhao, DUAN Dong, CAO Zhi-lin, . Three-dimensional parallel numerical simulation of porous rocks based on CT technology and digital image processing [J]. Rock and Soil Mechanics, 2019, 40(3): 1204-1212.
[6] YANG Ai-wu, PAN Ya-xuan, CAO Yu, SHANG Ying-jie, WU Ke-long, . Laboratory experiment and numerical simulation of soft dredger fill with low vacuum pre-compression [J]. Rock and Soil Mechanics, 2019, 40(2): 539-548.
[7] WANG Hua-bin, LI Jian-mei, JIN Yi-xuan, ZHOU Bo, ZHOU Yu, . The numerical methods for two key problems in rainfall-induced slope failure [J]. Rock and Soil Mechanics, 2019, 40(2): 777-784.
[8] CHEN Shang-yuan, ZHAO Fei, WANG Hong-jian, YUAN Guang-xiang, GUO Zhi-biao, YANG Jun, . Determination of key parameters of gob-side entry retaining by cutting roof and its application to a deep mine [J]. Rock and Soil Mechanics, 2019, 40(1): 332-342.
[9] ZHENG Jun-jie, LÜ Si-qi, CAO Wen-zhao, JING Dan, . Numerical simulation of composite rigid-flexible pile-supported retaining wall under the action of high-filled expansive soil [J]. Rock and Soil Mechanics, 2019, 40(1): 395-402.
[10] WANG Jie, GONG Jing-wei, ZHAO Ze-yin. Position, direction of strain localization of rock-like specimens under uniaxial compression and its application to early-warning [J]. Rock and Soil Mechanics, 2018, 39(S2): 186-194.
[11] LI Yang, SHE Cheng-xue, ZHU Huan-chun, . Simulation and verification of particle flow of vibration rolling compaction of field rockfill [J]. Rock and Soil Mechanics, 2018, 39(S2): 432-442.
[12] ZHANG Zhi-guo, ZHANG Cheng-ping, MA Bing-bing, GONG Jian-fei, YE Tong. Physical model test and numerical simulation for anchor cable reinforcements of existing tunnel under action of landslide [J]. , 2018, 39(S1): 51-60.
[13] OU Xiao-duo, PAN Xin, HOU Kai-wen, JIANG Jie , LIU Zi-yan,. Electrical shock characteristics of hydraulic fill in reclamation land in Beibu Gulf of Guangxi [J]. , 2018, 39(S1): 348-354.
[14] LIU Jian, ZHAO Guo-yan, LIANG Wei-zhang, WU Hao, PENG FU-hua,. Numerical simulation of uniaxial compressive strength and failure characteristics in nonuniform rock materials [J]. , 2018, 39(S1): 505-512.
[15] LI Zhao-hua, HU Jie, FENG Ji-li, GONG Wen-jun. Numerical simulation of debris flow based on visco-elastoplastic constitutive model [J]. , 2018, 39(S1): 513-520.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUN Yong. Research on calculation method of double-row anti-sliding structure under sliding surface[J]. , 2009, 30(10): 2971 -2977 .
[2] LI Hong-bo,GUO Xiao-hong. Research on calculation metheods of earth pressure on muti-arch tunnel for highway[J]. , 2009, 30(11): 3429 -3434 .
[3] LU Zu-de, CHEN Cong-xin, CHEN Jian-sheng, TONG Zhi-yi, ZUO Bao-cheng. Field shearing test for heavily weathered hornstone of Three Phase Project of Ling'ao Nuclear Power Station[J]. , 2009, 30(12): 3783 -3787 .
[4] WANG Chuan-ying, HU Pei-liang, SUN Wei-chun. Method for evaluating rock mass integrity based on borehole camera technology[J]. , 2010, 31(4): 1326 -1330 .
[5] LI Hua-ming, JIANG Guan-lu, LIU Xian-feng. Study of dynamic characteristics of saturated silty soil ground treated by CFG columns[J]. , 2010, 31(5): 1550 -1554 .
[6] TAN Yun-zhi, KONG Ling-wei, GUO Ai-guo, WAN Zhi. Capillary effect of moisture transfer and its numerical simulation of compacted laterite soil[J]. , 2010, 31(7): 2289 -2294 .
[7] . [J]. , 2010, 31(7): 2351 -2352 .
[8] WANG Sheng-xin, LU Yong-xiang, YIN Ya-xiong, GUO Ding-yi. Experimental study of collapsiblity of gravel soil[J]. , 2010, 31(8): 2373 -2377 .
[9] WANG Yun-gang, XIONG Kai, LING Dao-sheng. Upper bound limit analysis of slope stability based on translational and rotational failure mechanism[J]. , 2010, 31(8): 2619 -2624 .
[10] MENG Qing-shan,KONG Ling-wei,CHEN Neng-yuan,FAN Jian-hai,GUO Gang. Centrifugal model test on slope supporting with pile-anchor combined retaining wall[J]. , 2010, 31(11): 3379 -3384 .