›› 2008, Vol. 29 ›› Issue (2): 529-534.

• Geotechnical Engineering • Previous Articles     Next Articles

Analysis of superimposed stress of surrounding soil due to shield tunneling

QI Jing-jing1, XU Ri-qing1, WEI Gang2,WANG Tao1   

  1. 1.College of Civil Engineering and Architecture,Zhejiang University,Hangzhou 310027,China; 2. Department of Civil Engineering, City College of Zhejiang University, Hangzhou 310015, China
  • Received:2006-05-22 Online:2008-02-11 Published:2013-07-10

Abstract: By using Mindlin solution and boundary element method, the calculation formulas of superimposed stress of surrounding soil induced by bulkhead pressure and friction force during the propulsion of shield tunneling are deduced. According to the space regularities of distribution of ground loss and by image method theory, the calculation formulas of superimposed stress are deduced. And combining the above three part of stress, the total superimposed stress induced by shield tunneling is obtained. Finally, combined with the practice of subway engineering in Shanghai, the distribution law of the superimposed stress caused by bulkhead pressure, friction, ground loss and their combined effect is analyzed. And the analytical results can provide gist for the protection of surrounding construction during the propulsion of shield tunneling.

Key words: Mindlin solution, image method, superimposed stress, bulkhead pressure, friction force, ground loss

CLC Number: 

  • TU 443
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] WEI Gang, JIANG Xin, ZHANG Xin-hai, JIN Rui,. Soil vertical deformation induced by ground penetrating shield tunnel construction [J]. , 2018, 39(3): 993-1001.
[2] ZHANG Bing-qiang, WANG Qi-yun, LU Xiao-ying, . Analytical solution for non-Darcian seepage field of a shallow circular tunnel in soft soil [J]. Rock and Soil Mechanics, 2018, 39(12): 4377-4384.
[3] ZHOU Jin-qiang, WANG Shu-ying, YANG Jun-sheng, FU Jin-yang,. Influence of tunneling on neighboring piles based on Mindlin solution [J]. , 2017, 38(4): 1075-1081.
[4] HE Tuan, MAO De-bing, HUANG Zhi-zeng, SUN Xiao-dong, ZHANG Xue-liang, . Stability evaluation and protection technology of waterproof segment pillar with fully-mechanized caving of ultra-thick coal seam [J]. , 2017, 38(4): 1148-1153.
[5] ZHOU Ping-huai1,2, YANG Xue-lin1. An equivalent method for calculating side friction of pile considering excavation-induced unloading effcet [J]. , 2016, 37(10): 2953-2960.
[6] LI Xin-xing, YANG Zhi-hao. Influences of construction of side-crossing shield tunnel on adjacent pile foundation and reinforcement effect of protection measures [J]. , 2015, 36(S1): 537-541.
[7] ZHANG Qiong-fang , LIN Cun-gang , DING Zhi , XIA Tang-dai , SHAN Hua-feng , . Theoretical analysis of vertical deformation of existing metro tunnel induced by shield tunneling under-passing in a short distance [J]. , 2015, 36(S1): 568-572.
[8] WEI Gang, PANG Si-yuan. Study of three-dimensional soil deformation caused by double-line parallel shield tunnel construction [J]. , 2014, 35(9): 2562-2568.
[9] CHEN Chun-lai, ZHAO Cheng-li, WEI Gang, DING Zhi. Prediction of soil settlement induced by double-line shield tunnel based on Peck formula [J]. , 2014, 35(8): 2212-2218.
[10] YANG Jian-min , LI Jia,. A practical method for calculating layerwise rebound at the bottom of foundation pit [J]. , 2014, 35(5): 1413-1420.
[11] JING Lu ,YUAN Ju-yun ,YUAN Yong . Ground loss parameter and soil deformation in pipe jacking [J]. , 2013, 34(S1): 173-178.
[12] WEI Xin-jiang ,HONG Jie ,WEI Gang . Analysis of additional load on adjacent pile foundation induced by double-o-tube shield tunnel construction [J]. , 2013, 34(3): 783-790.
[13] RAO Ping-ping , LI Jing-pei , ZHANG Chang-guang . Influence of prebored hole on soil-squeezing displacement for pile sinking adjacent to slope [J]. , 2012, 33(S2): 155-161预钻孔对邻近斜坡沉桩挤土影响分析.
[14] SHEN Lin-fang , WANG Zhi-liang , XIE Jian-bin . Response analysis of soil deformation induced by shallow tunnel excavation base on boundary collocation method [J]. , 2012, 33(S2): 297-301.
[15] RAO Ping-ping ,LI Jing-pei ,LIU Ying. Analysis of soil squeezing effect for spherical cavity expansion with inclined nonaxisymmetric displacement boundary [J]. , 2011, 32(9): 2681-2687.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHAO Hong-bao, YIN Guang-zhi, LI Xiao-shuang. Experimental study of characteristics of tensile burned gritstone[J]. , 2010, 31(4): 1143 -1146 .
[2] HE Si-ming, WU Yong, LI Xin-po. Research on mechanism of uplift rock-socketed piles[J]. , 2009, 30(2): 333 -337 .
[3] LIU Qing-bing,XIANG Wei,ZHANG Wei-feng,CUI De-shan. Experimental study of ionic soil stabilizer-improves expansive soil[J]. , 2009, 30(8): 2286 -2290 .
[4] DU Wen-qi, WANG Gang. Statistical analysis of earthquake-induced sliding displacements of earth structures[J]. , 2011, 32(S1): 520 -0525 .
[5] XU Zhen-hao , LI Shu-cai , LI Li-ping , HOU Jian-gang , SUI Bin , SHI Shao-shuai. Risk assessment of water or mud inrush of karst tunnels based on analytic hierarchy process[J]. , 2011, 32(6): 1757 -1766 .
[6] WEN Shi-qing , LIU Han-long , CHEN Yu-min. Analysis of load transfer characteristics of single grouted gravel pile[J]. , 2011, 32(12): 3637 -3641 .
[7] GONG Si-yuan,DOU Lin-ming,HE Jiang,HE Hu,LU Cai-ping,MU Zong-long. Study of correlation between stress and longitudinal wave velocity for deep burst tendency coal and rock samples in uniaxial cyclic loading and unloading experiment[J]. , 2012, 33(1): 41 -47 .
[8] ZHONG Sheng ,WANG Chuan-ying ,WU Li-xin ,TANG Xin-jian ,WANG Qing-yuan. Borehole radar response characteristics of point unfavorable geo-bodies: forward simulation of its surrounding rock and filling condition[J]. , 2012, 33(4): 1191 -1195 .
[9] MENG Zhen, CHEN Jin-jian, WANG Jian-hua, YIN Zhen-yu. Study of model test on bearing capacity of screw piles in sand[J]. , 2012, 33(S1): 141 -145 .
[10] LUO Gang , HU Xie-wen , GU Cheng-zhuang . Study of kinetic failure mechanism and starting velocity of consequent rock slopes under strong earthquake[J]. , 2013, 34(2): 483 -490 .