›› 2008, Vol. 29 ›› Issue (6): 1669-1674.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental investigations on correlativity between liquidity index and other parameters of silty clay in Su-Tong Bridge subgrade

JIANG Jian-ping1, LUO Guo-yu2   

  1. 1. College of Traffic and Transportation, Shanghai Maritime University, Shanghai, 200135, China; 2. Department of Earth Science, Nanjing University, Nanjing 210093, China
  • Received:2006-09-11 Online:2008-06-10 Published:2013-07-15

Abstract: Through large numbers of geotechnical tests, the correlativity between liquidity index and natural water content, natural void ration, natural density, modulus of compressibility, coefficient of compressibilty, cohesion of silty clay in the subgrade of Su-Tong Bridge Engineering at lower reaches of the Yangtze River was studied, regression equations were given, and the comparison of correlativity curves with other areas in China was also presented. It was found that the correlativity between liquidity index and natural water content, natural void ration, natural density, coefficient of compressibilty was linear, and the correlativity coefficients were over 0.92; the correlativity between liquid index and modulus of compressibility, cohesion is exponential, and the correlativity coefficients were over 0.87; there were better comparability between regression curves of silty clay in Su-Tong Bridge subgrade and regression curves of silty clay in other areas’ subgrade. The following conclusions can be drawn that these regression equations in this paper can provide important reference for silty clay in analogous subgrade.

Key words: liquidity index, silty clay, correlativity, Su-Tong Bridge

CLC Number: 

  • TU 413
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] LIU Jia-shun, WANG Lai-gui, ZHANG Xiang-dong, LI Xue-bin, ZHANG Jian-jun, REN Kun, . Cyclic triaxial test on saturated silty clay under partial drainage condition with variable confining pressure [J]. Rock and Soil Mechanics, 2019, 40(4): 1413-1419.
[2] HU Tian-fei, LIU Jian-kun, WANG Tian-liang, YUE Zu-run, . Effect of freeze-thaw cycles on deformation characteristics of a silty clay and its constitutive model with double yield surfaces [J]. Rock and Soil Mechanics, 2019, 40(3): 987-997.
[3] LIU Song-yu, CAO Jing-jing, CAI Guang-hua, . Microstructural mechanism of reactive magnesia carbonated and stabilized silty clays [J]. , 2018, 39(5): 1543-1552.
[4] LI Lian-xiang, FU Qing-hong, HUANG Jia-jia, . Centrifuge model tests on cantilever foundation pit engineering in sand ground and silty clay ground [J]. , 2018, 39(2): 529-536.
[5] CHEN Shu-feng, KONG Ling-wei, LI Cheng-sheng, . Nonlinear characteristics of Poisson's ratio of silty clay under low amplitude strain [J]. , 2018, 39(2): 580-588.
[6] YANG Guang-chang, BAI Bing. Thermal consolidation of saturated silty clay considering overconsolidation effect with different heating-cooling paths [J]. , 2018, 39(1): 71-77.
[7] LI Shu-cai, CHEN Hong-bin, ZHANG Chong, GONG Ying-jie, LI Hui-liang, DING Wan-tao, WANG Qi,. Research on effect of advanced support in silty clay tunnel [J]. , 2017, 38(S2): 287-294.
[8] XIE Wei, ZHANG Ding-wen, YANG Sheng,. Impact of moisture content on variation of small-strain shear modulus of compacted subgrade soil [J]. , 2017, 38(5): 1273-1280.
[9] TU Yi-liang, LIU Xin-rong, ZHONG Zu-liang, WANG Sui, WANG Zi-juan, KE Wei, . Experimental study on strength and deformation characteristics of silty clay during wetting-drying cycles [J]. , 2017, 38(12): 3581-3589.
[10] DAI Jin-qiu, SU Zhong-jie, ZHAO Ming-chao, XIANG Yu-hang,. True triaxial tests and strength characteristics of silty clay [J]. , 2016, 37(9): 2534-2540.
[11] NIU Ya-qiang , LAI Yuan-ming , WANG Xu , LIAO Meng-ke , GAO Juan,. Research on influences of initial water content on deformation and strength behaviors of frozen silty clay [J]. , 2016, 37(2): 499-506.
[12] YANG De-huan, YAN Rong-tao, WEI Chang-fu, ZHANG Min, ZHANG Qin,. A study of water chemical sensitivity of strength indices of silty clay [J]. , 2016, 37(12): 3529-3536.
[13] ZHAN Gao-feng, ZHANG Qun, ZHU Fu, DONG Wei-zhi. Research on influence of freeze-thaw cycles on static strength of lime-treated silty clay [J]. , 2015, 36(S2): 351-356.
[14] ZHANG Qin, YAN Rong-tao , WEI Chang-fu , YANG De-huan , YU Ming-bo , YANG Li-ya , . Effects of pore fluids on consistency limits of silty clay [J]. , 2015, 36(S1): 558-52.
[15] JIN Ai-bing , WANG Kai , ZHANG Xiu-feng , MENG Xin-qiu , YANG Zhen-wei,. A generalized Kelvin model based on the particle flow code and its application [J]. , 2015, 36(9): 2695-2701.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUN Yong. Research on calculation method of double-row anti-sliding structure under sliding surface[J]. , 2009, 30(10): 2971 -2977 .
[2] LU Zu-de, CHEN Cong-xin, CHEN Jian-sheng, TONG Zhi-yi, ZUO Bao-cheng. Field shearing test for heavily weathered hornstone of Three Phase Project of Ling'ao Nuclear Power Station[J]. , 2009, 30(12): 3783 -3787 .
[3] WANG Yang, ZHOU li, YIN Kun-long. Research on stability of sliding mass below water level based on analyzing water pressures around slices[J]. , 2010, 31(4): 1068 -1071 .
[4] QIU Min-yu,YU Ya-nan. Analysis of influence depth for roads induced by vehicle load[J]. , 2010, 31(6): 1822 -1826 .
[5] SU Kai, WU He-gao, ZHOU Chuang-bing. Study of combined bearing characteristics of lining and surrounding rock for hydraulic tunnel under internal water pressure[J]. , 2010, 31(8): 2407 -2412 .
[6] WANG Yun-gang, XIONG Kai, LING Dao-sheng. Upper bound limit analysis of slope stability based on translational and rotational failure mechanism[J]. , 2010, 31(8): 2619 -2624 .
[7] FANG Jing-nian, ZHOU Hui, HU Da-wei, SHAO Jian-fu, LIANG Yu-lei. Coupled elastoplastic-damage model for salt rock[J]. , 2011, 32(2): 363 -368 .
[8] WANG Hong-liang , FAN Peng-xian , WANG Ming-yang , LI Wen-pei , QIAN Yue-hong. Influence of strain rate on progressive failure process and characteristic stresses of red sandstone[J]. , 2011, 32(5): 1340 -1346 .
[9] ZHOU Yi, LI Shu-cai, LI Li-ping, ZHAO Yan, LIU Qin, YUAN Xiao-shuai. Study of influence of formation conditions on construction process rules of ultralarge section and weak broken wall rock tunnel by numerical simulation[J]. , 2011, 32(S2): 673 -678 .
[10] YANG Feng-xue ,ZHANG Xi-fa ,LENG Yi-fei ,ZHAO Yi-min. Empirical method for determining thawing volume compression coefficient of frozen soil[J]. , 2011, 32(11): 3432 -3436 .