›› 2009, Vol. 30 ›› Issue (4): 1186-1190.

• Numerical Analysis • Previous Articles     Next Articles

Study of orefragment size prediction in block caving based on Monte Carlo stochastic simulation

LI Xiang,JIA Ming-tao,WANG Li-guan,BAI Yun-fei   

  1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China
  • Received:2008-04-15 Online:2009-04-10 Published:2011-01-30

Abstract:

A simulation of the joint network in mining area III of a nickel mine in China is made based on the Monte Carlo method and by using joint plane space geometrical data measured in-situ. According to the above theory, a 3D fragmentation size prediction software named MAKEBLOCK is developed and used in the forecast and analysis of ore fragmentation size distribution of the mining area. The result shows that the most of the ore body blocks are discoid and blocky, with block size less than 0.2 m3 and equivalent dimension from 0.2m to 0.5m. The predicting results can be used as the basis for design and practice of block caving.

Key words: block caving method, Monte Carlo method, joint, fragmentation prediction

CLC Number: 

  • O 14
[1] WANG Pei-tao, HUANG Zheng-jun, REN Fen-hua, ZHANG Liang, CAI Mei-feng, . Research on direct shear behaviour and fracture patterns of 3D-printed complex jointed rock models [J]. Rock and Soil Mechanics, 2020, 41(1): 46-56.
[2] XIA Cai-chu, YU Qiang-feng, QIAN Xin, GUI Yang, ZHUANG Xiao-qing. Experimental study of shear-seepage behaviour of rock joints under constant normal stiffness [J]. Rock and Soil Mechanics, 2020, 41(1): 57-66.
[3] WANG Peng-fei, TAN Wen-hui, MA Xue-wen, LI Zi-jian, LIU Jing-jun, WU Yang-fan. Experimental study of seepage characteristics of consecutive and filling fracture with different roughness levels and gap-widths [J]. Rock and Soil Mechanics, 2019, 40(8): 3062-3070.
[4] XU Jiang, QU Jia-mei, LIU Yi-xin, PENG Shou-jian, WANG Wei, WU Shan-kang, . Influence of filling material on the behavior of joints under cyclic shear loading [J]. Rock and Soil Mechanics, 2019, 40(5): 1627-1637.
[5] WU Qiong, WANG Xiao-han, TANG Hui-ming, LIU Chao-yuan, JIANG Yao-fei, XU Yan-jun, . Shear property and water-induced deterioration of discontinuities between different types of rocks in Badong formation [J]. Rock and Soil Mechanics, 2019, 40(5): 1881-1889.
[6] HUANG Sheng-gen, SHEN Jia-hong, LI Meng, . Reliability analysis of bearing capacity of post-grouted bored piles [J]. Rock and Soil Mechanics, 2019, 40(5): 1977-1982.
[7] ZHOU Hui, CHENG Guang-tan, ZHU Yong, CHEN Jun, LU Jing-jing, CUI Guo-jian, YANG Pin-qing, . Experimental study of shear deformation characteristics of marble dentate joints [J]. Rock and Soil Mechanics, 2019, 40(3): 852-860.
[8] GAO Qing-peng, CAO Ping, WANG Fei, WANG Zhu. Mechanical properties and failure criteria of multi-joint rock-like specimens under compression-shear [J]. Rock and Soil Mechanics, 2019, 40(3): 1013-1022.
[9] XU Dong-dong, WU Ai-qing, LI Cong, WANG Bin, JIANG Yu-zhou, ZENG Ping, YANG Yong-tao, . An improved discontinuous deformation analysis method for simulation of whole fracturing process [J]. Rock and Soil Mechanics, 2019, 40(3): 1169-1178.
[10] KE Zhi-qiang, WANG Huan-ling, XU Wei-ya, LIN Zhi-nan, JI Hua, . Experimental study of mechanical behaviour of artificial columnar jointed rock mass containing transverse joints [J]. Rock and Soil Mechanics, 2019, 40(2): 660-667.
[11] SUN Qian-cheng, ZHENG Min-zong, LI Shao-jun, GUO Hao-sen, CHENG Yuan, PEI Shu-feng, JIANG Quan, . Variation characteristics and determination of tunnel relaxation depth of columnar jointed rock mass [J]. Rock and Soil Mechanics, 2019, 40(2): 728-736.
[12] XU Jiang, LEI Jiao, LIU Yi-xin, WU Jun-yu, . Experimental study on shear behavior of joints filled with different materials [J]. Rock and Soil Mechanics, 2019, 40(11): 4129-4137.
[13] YAN Gao-ming, SHEN Yu-sheng, GAO Bo, ZHENG Qing, FAN Kai-xiang, HUANG Hai-feng. Experimental study of stick-slip fault crossing segmental tunnels with joints [J]. Rock and Soil Mechanics, 2019, 40(11): 4450-4458.
[14] WANG Ben-xin, JIN Ai-bing, ZHAO Yi-qing, WANG He, SUN Hao, LIU Jia-wei, WEI Yu-dong, . Fracture law of 3D printing specimen with non-consecutive joints based on CT scanning [J]. Rock and Soil Mechanics, 2019, 40(10): 3920-3927.
[15] ZHOU Hui, CHENG Guang-tan, ZHU Yong, ZHANG Chun-sheng, . Anisotropy of shear characteristics of rock joint based on 3D carving technique [J]. Rock and Soil Mechanics, 2019, 40(1): 118-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[3] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[4] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[5] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[6] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[7] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[8] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .
[9] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[10] ZHAO Yue-tang, LIN Jia-wei, SHI Lei. Research of spalling under impulse loading[J]. , 2011, 32(S2): 122 -126 .