›› 2009, Vol. 30 ›› Issue (6): 1775-1781.

• Numerical Analysis • Previous Articles     Next Articles

Searching potential slip surface of slopes based on the vector sum analysis method

GUO Ming-wei,LI Chun-guang,GE Xiu-run,WANG Shui-lin,LÜ Ying-hui   

  1. State Key Laboratory of Rock & Soil Mechanics, Institute of Rock & Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2008-09-19 Online:2009-06-10 Published:2011-03-09

Abstract:

Based on the vector characteristics of forces, the vector expression of the safety factor in the vector sum analysis method (VSAM) is presented. In a slope with certain conditions, after determining the stress distribution with FEM, the critical slip surface can be searched with VSAM and the direct method in optimization algorithm. The calculated results show that the locations of the critical slip surfaces are in good agreement with the ones with Morgenstern—Price (M-P) limit equilibrium method, and the maximum relative error is only 2.09 percents between the safety factor obtained by VSAM and that by M-P method in calculated examples, which proves that VSAM is reasonable and reliable. At present, the methods with the safety factor of strength reserve are widely used in slope engineering; however, VSAM is different from the methods above。VSAM is clear in physics; the formula and its calculating process are very simple; and it will be easy to be applied in 3-D slope stability analysis. So VSAM can be widely used in practice.

Key words: vector sum analysis method, slip surface search, limit equilibrium method, slope stability analysis

CLC Number: 

  • O 319.56
[1] ZHANG Hai-na, CHEN Cong-xin, ZHENG Yun, SUN Chao-yi, ZHANG Ya-peng, LIU Xiu-min, . Analysis of flexural toppling failure of rock slopes subjected to the load applied on the top [J]. Rock and Soil Mechanics, 2019, 40(8): 2938-2946.
[2] HAN Tong-chun, LIN Bo-wen, HE Lu, SU Yu-qin, . Three-dimensional slope modelling method and its stability based on coupled GIS and numerical simulation software [J]. Rock and Soil Mechanics, 2019, 40(7): 2855-2865.
[3] YU Guo, XIE Mo-wen, ZHENG Zheng-qin, QIN Shi-he, DU Yan, . Research on slope stability calculation method based on GIS [J]. Rock and Soil Mechanics, 2019, 40(4): 1397-1404.
[4] DAI Zhong-hai, HU Zai-qiang, YIN Xiao-tao, WU Zhen-jun,. Deformation stability analysis of gentle reverse inclined layer-like rock slope under engineering load [J]. , 2018, 39(S1): 412-418.
[5] QIN Yu-qiao, TANG Hua, FENG Zhen-yang, YIN Xiao-tao, WANG Dong-ying, . Slope stability evaluation by clustering analysis [J]. , 2018, 39(8): 2977-2983.
[6] YAN Shu-wang, LI Jia, YAN Yue, CHEN Hao,. Research on stable limit depth of vertical cylinder hole in cohesive soil ground [J]. , 2018, 39(4): 1176-1181.
[7] ZHU Yan-peng, YANG Xiao-yu, MA Xiao-rui, YANG Xiao-hui, YE Shuai-hua, . Several questions of double reduction method for slope stability analysis [J]. , 2018, 39(1): 331-338.
[8] YANG Ming-hui, DAI Xia-bin, ZHAO Ming-hua, LUO Hong. Calculation of active earth pressure for limited soils with curved sliding surface [J]. , 2017, 38(7): 2029-2035.
[9] NIE Zhi-bao, ZHENG Hong, ZHANG Tan. Determination of slope critical slip surfaces using strength reduction method and wavelet transform [J]. , 2017, 38(6): 1827-1831.
[10] ZHANG Kun, XU Qing, WANG Yi-fan, A Hu-bao. Application of self-adaptive differential evolution algorithm in searching for critical slip surface of slope [J]. , 2017, 38(5): 1503-1509.
[11] LIU Zhen-ping, YANG Bo, LIU Jian, HE Huai-jian,. Three-dimensional limit equilibrium method based on GRASS GIS and TIN sliding surface [J]. , 2017, 38(1): 221-228.
[12] ZHOU Yang-yi, FENG Xia-ting, XU Ding-ping, HE Ming-wu,. A simplified analysis method of block stability in large underground powerhouse [J]. , 2016, 37(8): 2391-2398.
[13] GAO Ru-chao, LI Chun-guang, SUN Cong, ZHENG Hong, GE Xiu-run,. Lower bound finite element method for analyzing tenso-shear failure of slopes [J]. , 2016, 37(8): 2426-2432.
[14] YAN Chao ,LIU Song-yu ,JI Xiao-lei,. Research on a secondary sliding surface analysis approach based on strength reduction method [J]. , 2016, 37(4): 935-942.
[15] LIU Shuan-qi , LU Kun-lin , ZHU Da-yong , WU Ying-lei , GAN Wen-ning , . A method for calculating the ultimate bearing capacity of a strip footing on the reinforced sand [J]. , 2015, 36(8): 2307-2314.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAN Xian-jun, CHEN Wei-zhong, YANG Jian-ping, YANG Chun-he. Study of THM-damage coupling model of gas storage in salt rock with interlayer[J]. , 2009, 30(12): 3633 -3641 .
[2] WEI Xing,WANG Gang,YU Zhi-ling. FEM of traffic-load-induced settlement of road on soft clay[J]. , 2010, 31(6): 2011 -2015 .
[3] WEN Shi-yi, LI Jing , SU Xia , YAO Xiong. Studies of mesomechanical structure characters of surrounding rock failure under complex stress state[J]. , 2010, 31(8): 2399 -2406 .
[4] MAO Ning,ZHANG Yao-liang. Typical examples of simple methods to find empirical formulas[J]. , 2010, 31(9): 2978 -2982 .
[5] LIU Jie,LI Jian-lin,QU Jian-jun,Cheng Xing,LI Jian-wu,LUO Shi-wei. Multiple factors analysis of influence of developing horizontal displacement at Dagangshan dam abutment slope based on unloading rock mass mechanics[J]. , 2010, 31(11): 3619 -3626 .
[6] LI Wei-hua, ZHAO Cheng-gang, DU Nan-xin. Analysis of effects of saturated soft interlayer on seismic responses of metro station[J]. , 2010, 31(12): 3958 -3963 .
[7] HAN Xian-min. Study of construction technology and mechanical effect of Guanjiao tunnel in shallow-buried sandy stratum in Xining-Golmud 2nd line[J]. , 2010, 31(S2): 297 -302 .
[8] LIU Yong-hai, ZHU Xiang-rong, CHANG Lin-yue. Determining preconsolidation pressure by mathematic analysis based on casagrande method[J]. , 2009, 30(1): 211 -214 .
[9] ZHU Lei, HONG Bao-ning. Physico-mechanical characteristics of powdered soil of coal measure strata[J]. , 2009, 30(5): 1317 -1322 .
[10] ZHOU Chun-mei, ZHANG Ze-jun, XU Da-jie, WANG Sheng-wei, LI Xian-fu. Research on numerical simulation of paleo-tectonic stress fields and hazard prediction[J]. , 2009, 30(7): 2141 -2146 .