›› 2010, Vol. 31 ›› Issue (6): 1769-1775.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Deformation and damping characteristics of EPS beads-mixed lightweight soil under repeated load-unloading

LI Jing1,MIAO Lin-chang1,ZHONG Jian-chi2,FENG Zhao-xiang2   

  1. 1. Institute of Geotechnical Engineering, Southeast University, Nanjing 210096, China; 2. Department of Yangtze River Highway Bridge of Jiangsu Province, Taizhou, Jiangsu 225300, China
  • Received:2009-01-06 Online:2010-06-10 Published:2010-06-25

Abstract:

Through repeated load-unloading triaxial shear tests, characteristics of deformation and damping of EPS beads-mixed lightweight soil under repeated load-unloading were studied. Laws between axial accumulative strain and axial total strain, between modulus of resilience and axial total strain, and between damping ratio and axial total strain were analyzed under different confining pressures, different cement-dry soil ratios and different types of soils. Results show that the axial accumulative strain and the axial total strain is a linear relationship. The modulus of resilience increases as the confining pressure and the cement-dry soil ratio increase. Under a range of the confining pressures and the cement-dry soil ratios, the modulus of resilience of sand type lightweight soil is larger than that of silty clay type lightweight soil when the axial total strain is smaller than 8%. While it changes to the opposite side when the axial total strain is larger than 8%. Curves between the modulus of resilience and the axial total strain can be fitted by diminishing power functions. The damping ratio of the EPS beads-mixed lightweight soil increases as the axial total strain increases, and decreases as the confining pressure and the cement-dry soil ratio increase. The damping ratio of the sand type lightweight soil is smaller than that of the silty clay type lightweight soil, but differences of the damping ratio between the two types of lightweight soil are small and the damping ratio is an approximate constant.

Key words: EPS beads-mixed lightweight soil, repeated load-unloading, axial accumulative strain, modulus of resilience, damping ratio

CLC Number: 

  • TU 443
[1] LIANG Ke, HE Yang, CHEN Guo-xing, . Experimental study of dynamic shear modulus and damping ratio characteristics of coral sand from Nansha Islands [J]. Rock and Soil Mechanics, 2020, 41(1): 23-31.
[2] RUI Sheng-jie, GUO Zhen, WANG Li-zhong, ZHOU Wen-jie, LI Yu-jie, . Experimental study of cyclic shear stiffness and damping ratio of carbonate sand-steel interface [J]. Rock and Soil Mechanics, 2020, 41(1): 78-86.
[3] LIANG Ke, CHEN Guo-xing, HE Yang, LIU Jing-ru, . An new method for calculation of dynamic modulus and damping ratio based on theory of correlation function [J]. Rock and Soil Mechanics, 2019, 40(4): 1368-1376.
[4] ZHUANG Xin-shan, WANG Jun-xiang, WANG Kang, LI Kai, HU Zhi. Experimental study on dynamic characteristics of expansive soil modified by weathered sand [J]. Rock and Soil Mechanics, 2018, 39(S2): 149-156.
[5] ZHANG Wei, LI Ya, ZHOU Song-wang, JIANG Zheng-bo, WU Fei, LIANG Wen-zhou,. Experimental research on cyclic behaviors of clay in the northern region of South China Sea [J]. , 2018, 39(7): 2413-2423.
[6] KONG Gang-qiang, LI Hui, WANG Zhong-tao , WEN Lei,. Comparison of dynamic properties between transparent sand and natural sand [J]. , 2018, 39(6): 1935-1940.
[7] LIU Fei-yu, SHI Jing, WANG Jun, CAI Yuan-qiang,. Dynamic shear behavior of interface for clay reinforced with geogrid encapsulated in thin layers of sand [J]. , 2018, 39(6): 1991-1998.
[8] WU Meng-tao, LIU Fang-cheng, CHEN Ju-long, CHEN Lu. Influence of water content on dynamic shear modulus and damping ratio of rubber-sand mixture under large strains [J]. , 2018, 39(3): 803-814.
[9] CHEN Shu-feng, KONG Ling-wei, LI Cheng-sheng, . Nonlinear characteristics of Poisson's ratio of silty clay under low amplitude strain [J]. , 2018, 39(2): 580-588.
[10] HE Ming-ming, LI Ning, CHEN Yun-sheng, ZHU Cai-hui. Damping ratio and damping coefficient of rock under different cyclic loading conditions [J]. , 2017, 38(9): 2531-2538.
[11] LIU Jie, LEI Lan, WANG Rui-hong, WANG Fei, WANG Lian, XIAO Lei. Dynamic characteristics of sandstone under low-stress level conditions in freezing-thawing cycles [J]. , 2017, 38(9): 2539-2550.
[12] CHEN Le-qiu, ZHANG Jia-sheng, CHEN Jun-hua, CHEN Ji-guang,. Testing of static and dynamic strength properties of cement-improved argillaceous-slate coarse-grained soil [J]. , 2017, 38(7): 1903-1910.
[13] WANG Xin-zhi, WANG Xing, LIU Hai-feng, MENG Qing-shan, ZHU Chang-qi,. Field test study of engineering behaviors of coral reef foundation [J]. , 2017, 38(7): 2065-2070.
[14] DING Zu-de, HUANG Juan, YUAN Tie-ying, PENG Li-min, WANG Zhi-liang,. Experimental study of dynamic shear modulus and damping ratio of peaty soil in Kunming [J]. , 2017, 38(12): 3627-3634.
[15] DENG Hua-feng, HU Yu, LI Jian-lin, WANG Zhe, ZHANG Xiao-jing, ZHANG Heng-bin. Effects of frequency and amplitude of cyclic loading on the dynamic characteristics of sandstone [J]. , 2017, 38(12): 3402-3409.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAN Xian-jun, CHEN Wei-zhong, YANG Jian-ping, YANG Chun-he. Study of THM-damage coupling model of gas storage in salt rock with interlayer[J]. , 2009, 30(12): 3633 -3641 .
[2] TIAN Wei,DANG Fa-ning,DING Wei-hua,LIANG Xin-yu,CHEN Hou-qun. Development of a dynamic loading apparatus for CT experiment and its application[J]. , 2010, 31(1): 309 -313 .
[3] TAN Han-hua, FU He-lin. Testing study of application of time domain reflectometry to highway slope monitoring[J]. , 2010, 31(4): 1331 -1336 .
[4] ZHANG Zhi-qiang, HE Ben-guo, HE Chuan. Study of load of lining under condition of saturated stratum for underwater tunnels[J]. , 2010, 31(8): 2465 -2470 .
[5] YU Tian-tang. Extended finite element method for modeling three-dimensional crack problems[J]. , 2010, 31(10): 3280 -3285 .
[6] LIU Jie,LI Jian-lin,QU Jian-jun,Cheng Xing,LI Jian-wu,LUO Shi-wei. Multiple factors analysis of influence of developing horizontal displacement at Dagangshan dam abutment slope based on unloading rock mass mechanics[J]. , 2010, 31(11): 3619 -3626 .
[7] LI Wei-hua, ZHAO Cheng-gang, DU Nan-xin. Analysis of effects of saturated soft interlayer on seismic responses of metro station[J]. , 2010, 31(12): 3958 -3963 .
[8] HAN Xian-min. Study of construction technology and mechanical effect of Guanjiao tunnel in shallow-buried sandy stratum in Xining-Golmud 2nd line[J]. , 2010, 31(S2): 297 -302 .
[9] JIANG Zheng-wei, PENG Jian-bing, WANG Qi-yao. Adverse geological problems and countermeasure of Xi’an Metro Line 3[J]. , 2010, 31(S2): 317 -321 .
[10] LIU Yong-hai, ZHU Xiang-rong, CHANG Lin-yue. Determining preconsolidation pressure by mathematic analysis based on casagrande method[J]. , 2009, 30(1): 211 -214 .