›› 2010, Vol. 31 ›› Issue (6): 1813-1816.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study of pullout tests of recoverable anchors

PANG You-shi1, 2, 3,LIU Han-long1, 2,GONG Yi-jun2   

  1. 1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China; 2. Geotechnical Research Institute, Hohai University, Nanjing 210098, China; 3. Engineering Institute of Engineering Crop, PLA Univ. of Sci & Tech., Nanjing 210007, China
  • Received:2008-09-28 Online:2010-06-10 Published:2010-06-25

Abstract:

In order to study on the anchoring mechanism of the recoverable anchors, the p-s curves are obtained based on the pullout tests of the anchors with various lengths. The test results indicate that the recoverable anchor is a compression anchor and has good mechanical properties, high bearing capacity and good anticorrosive properties as well as it has the advantages of easy to be recovered. When the length of the anchor is large than a critical value, the anchor force will not be increased with the increasing of the length. The anchor does not pollute the underground space, especially adapts to be used in temporary strengthening and instantaneous strengthening. The test results verified the rationality and security of the anchor design. The result of this paper is a valuable reference for the future application of recoverable anchors.

Key words: recoverable, anchor, load-transfer mechanism, critical length, pullout tests

CLC Number: 

  • TD 353.6
[1] LI Jian, CHEN Shan-xiong, YU Fei, JIANG Ling-fa, DAI Zhang-jun. Discussion on mechanism of reinforcing high and steep slope with prestressed anchor cable [J]. Rock and Soil Mechanics, 2020, 41(2): 707-713.
[2] JIN Qing, WANG Yi-lin, CUI Xin-zhuang, WANG Cheng-jun, ZHANG Ke, LIU Zheng-yin, . Deformation behaviour of geobelt in weathered rock material-tire shred lightweight soil under pullout condition [J]. Rock and Soil Mechanics, 2020, 41(2): 408-418.
[3] GUO Yuan-cheng, LI Ming-yu, ZHANG Yan-wei, . Incremental analytical method for prestressed anchor and soil nail wall composite support system [J]. Rock and Soil Mechanics, 2019, 40(S1): 253-258.
[4] ZHANG Yi-hu, WU Ai-qing, ZHOU Huo-ming, WANG Shuai, LUO Rong, FAN Lei. Review of bearing capacity and deformation characteristics of tunnel- type anchorage for suspension bridge [J]. Rock and Soil Mechanics, 2019, 40(9): 3576-3584.
[5] FENG Jun, WANG Yang, WU Hong-gang, LAI Bing, XIE Xian-dang, . Field pullout tests of basalt fiber-reinforced polymer ground anchor [J]. Rock and Soil Mechanics, 2019, 40(7): 2563-2573.
[6] JIANG Ze-feng, ZHANG Ge, ZHU Da-yong, WANG Jun, . Critical sliding field method for slope under anchorage force and its application [J]. Rock and Soil Mechanics, 2019, 40(7): 2799-2806.
[7] YAN Zhi-xin, LONG Zhe, QU Wen-rui, ZHANG Sen, JIANG Ping, . The effect of shear on the anchorage interface of rock slope with weak layers under earthquake [J]. Rock and Soil Mechanics, 2019, 40(7): 2882-2890.
[8] CUI Kai, HUANG Jing-jing, CHEN Wen-wu, WANG Dong-hua, HAN Ning, . Research on selection of anchor slurry and performance of mixed quick lime in earthen sites [J]. Rock and Soil Mechanics, 2019, 40(6): 2183-2191.
[9] LI Shu-zhao, WANG Zhong-chang, JIA Xu, HE Lin-lin, . Simplified calculation method for cyclic bearing capacity of suction anchors with taut mooring in soft clay [J]. Rock and Soil Mechanics, 2019, 40(5): 1704-1712.
[10] YU Yu, LIU Xin-rong, LIU Yong-quan, . Field experimental investigation on prestress loss law of anchor cable in foundation pits [J]. Rock and Soil Mechanics, 2019, 40(5): 1932-1939.
[11] ZHANG Jing-ke, SHAN Ting-ting, WANG Yu-chao, WANG Nan, FAN Meng, ZHAO Lin-yi, . Mechanical properties of soil-grout interface of anchor system in earthen sites [J]. Rock and Soil Mechanics, 2019, 40(3): 903-912.
[12] LUO Lin-ge, CUI Li-chuan, SHI Hai-yang, GUO Chao, YI Shao-ping, . Experimental study of bearing capacity of underground diaphragm wall-gravity anchorage composite foundation [J]. Rock and Soil Mechanics, 2019, 40(3): 1049-1058.
[13] LI Ning, YANG Min, LI Guo-feng. Revisiting the application of finite element method in geotechnical engineering [J]. Rock and Soil Mechanics, 2019, 40(3): 1140-1148.
[14] CHEN Jian-gong, CHEN Xiao-dong, . Analysis of whole process of bolt pulling based on wavelet function [J]. Rock and Soil Mechanics, 2019, 40(12): 4590-4596.
[15] YE Shuai-hua, ZHAO Zhuang-fu, ZHU Yan-peng, . Large-scale shaking table experiment of loess slope supported by frame anchors [J]. Rock and Soil Mechanics, 2019, 40(11): 4240-4248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[2] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[3] GAO Guang-yun, ZHAO Yuan-yi, GAO Meng, YANG Cheng-bin. Improved calculation for lateral dynamic impedance of pile groups in layered soil[J]. , 2010, 31(2): 509 -515 .
[4] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[5] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[6] LEI Ming-feng, PENG Li-min, SHI Cheng-hua, AN Yong-lin. Research on construction spatial effects in large-long-deep foundation pit[J]. , 2010, 31(5): 1579 -1584 .
[7] HU Yong-gang, LUO Qiang, ZHANG Liang, HUANG Jing, CHEN Ya-mei. Deformation characteristics analysis of slope soft soil foundation treatment with mixed-in-place pile by centrifugal model tests[J]. , 2010, 31(7): 2207 -2213 .
[8] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[9] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[10] LIU Han-long,TAO Xue-jun,ZHANG Jian-wei,CHEN Yu-min. Behavior of PCC pile composite foundation under lateral load[J]. , 2010, 31(9): 2716 -2722 .