›› 2010, Vol. 31 ›› Issue (9): 2829-2834.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental research on new grouting materials of acidic water glass-calcium carbonate

XIAO Zun-qun1,LIU Bao-chen1,QIAO Shi-fan1,YANG Xiao-li1,WU Guo-dong2   

  1. 1. School of Civil and Architectural Engineering, Central South University, Changsha 410075, China; 2. Shandong Provincial Department of Land and Resources, Jinan 274200, China
  • Received:2009-01-16 Online:2010-09-10 Published:2010-09-16

Abstract:

The change law of congealing time that water glass—calcium carbonic acid grouting material corresponding with the change of calcium carbonic acid is researched. The congealing time of sol increases as the reduction of quality of calcium carbonic acid. However it does not increase evenly with reduction of calcium carbonic acid. There is up-rush point of congealing time when the calcium carbonic acid is reduced to a certain amount. It is difficult to control congealing time accurately, as solution has very sensitive to putting into amount of the calcium carbonic acid. Calcium carbonic acid as alkaline reaction in the whole reaction system, react by H+ of system with solution. The pH value of sol is raised and vitriolic concentration is reduced. So the sol congealing time is changed. The suitable congealing time of colloid is chosen to test their own intensity and corresponding firm sand intensity. The change laws of two kinds of intensity is obtained Under the condition of fixedness of vitriolic consumption. The pure colloidal intensity increases as the increase of the calcium carbonic acid generally. But after adding to a certain amount, its intensity no longer increases. It is not obvious that the intensity of firm-sand body varies with calcium carbonic acid. The slurry of more excellent proportion is chosen to be new grouting material, and according to the performance of the slurry, the corresponding grouting craft is proposed. It has done better preparative work for the subsequent project application.

Key words: water glass, grouting, material, congealing, intensity

CLC Number: 

  • TU 581
[1] JIN Qing, WANG Yi-lin, CUI Xin-zhuang, WANG Cheng-jun, ZHANG Ke, LIU Zheng-yin, . Deformation behaviour of geobelt in weathered rock material-tire shred lightweight soil under pullout condition [J]. Rock and Soil Mechanics, 2020, 41(2): 408-418.
[2] ZHOU Cui-ying, KONG Ling-hua, CUI Guang-jun, YU Lei, LIU Zhen, . Molding simulation of soft rock based on natural red bed materials [J]. Rock and Soil Mechanics, 2020, 41(2): 419-427.
[3] CHEN He, ZHANG Yu-fang, ZHANG Xin-min, WEI Shao-wei, . Full-scale model experiments on anti-sliding characteristics of high-pressure grouting steel-tube micropiles [J]. Rock and Soil Mechanics, 2020, 41(2): 428-436.
[4] ZUO Yong-zhen, ZHAO Na. Experimental study on the seepage filter protection of core-wall material slurry under extreme conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 520-526.
[5] WANG feng, ZHANG Jian-qing, . Study of breakage behaviour of original rockfill materials considering size effect on particle strength [J]. Rock and Soil Mechanics, 2020, 41(1): 87-94.
[6] XIAO Yao, DENG Hua-feng, LI Jian-lin, ZHI Yong-yan, XIONG Yu. The deterioration effect of fractured rock mass strengthened by grouting method under long-term immersion [J]. Rock and Soil Mechanics, 2019, 40(S1): 143-151.
[7] ZHI Yong-yan, DENG Hua-feng, XIAO Yao, DUAN Ling-ling, CAI Jia, LI Jian-lin. Analysis of seepage characteristics of fractured rock mass reinforced by microbial grouting [J]. Rock and Soil Mechanics, 2019, 40(S1): 237-244.
[8] HE Fa-guo, LÜ Ran, SU Hua-zhong, ZHOU Jin, ZHANG Jing-ke, WANG Nan, . Durability test and reinforced mechanism on adding SH materials into soil of archaeological sites [J]. Rock and Soil Mechanics, 2019, 40(S1): 297-307.
[9] KUANG Du-min, LONG Zhi-lin, ZHOU Yi-chun, YAN Chao-ping, CHEN Jia-min, . Prediction of rate-dependent behaviors of cemented geo-materials based on BP neural network [J]. Rock and Soil Mechanics, 2019, 40(S1): 390-399.
[10] ZHANG Guo-kai, LI Hai-bo, WANG Ming-yang, LI Xiao-feng, . Crack propagation characteristics in rocks containing single fissure based on acoustic testing and camera technique [J]. Rock and Soil Mechanics, 2019, 40(S1): 63-72.
[11] XU Jiang, WU Jun-yu, LIU Yi-xin, LIE Jiao, . Experimental study of shear-seepage coupling properties of rock mass under different filling degrees [J]. Rock and Soil Mechanics, 2019, 40(9): 3416-3424.
[12] ZHANG Lei, WANG Ning-wei, JING Li-ping, FANG Chen, DONG Rui, . Comparative experiments of different electrode materials on electro-osmotic consolidation [J]. Rock and Soil Mechanics, 2019, 40(9): 3493-3501.
[13] WU Feng-yuan, FAN Yun-yun, CHEN Jian-ping, LI Jun, . Simulation analysis of dynamic process of debris flow based on different entrainment models [J]. Rock and Soil Mechanics, 2019, 40(8): 3236-3246.
[14] LIU Si-hong, SHEN Chao-min, MAO Hang-yu, SUN Yi. State-dependent elastoplastic constitutive model for rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(8): 2891-2898.
[15] DING Yan-hui, ZHANG Bing-yin, QIAN Xiao-xiang, YIN Yin, SUN Xun, . Experimental study of the characteristics of wetting deformation of rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(8): 2975-2981.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[3] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[4] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[5] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[6] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[7] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .
[8] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[9] LIU Zhen-ping, HE Huai-jian, ZHU Fa-hua. Study of technology of fast 3D modeling and visualization based on borehole data[J]. , 2009, 30(S1): 260 -266 .
[10] ZHAO Yue-tang, LIN Jia-wei, SHI Lei. Research of spalling under impulse loading[J]. , 2011, 32(S2): 122 -126 .