›› 2010, Vol. 31 ›› Issue (S1): 35-40.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental research on bearing mechanism of geo-reforcement foundations

WEN Song-lin,XU Wen-qiang   

  1. Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources, Yangtze River Scientific Research Institute, Wuhan 430010, China
  • Received:2010-04-23 Online:2010-08-10 Published:2010-09-09

Abstract:

Geo-reforcement foundation is a new type of pile foundation that is firstly developed and utilized in Japan. Compared with normal straight pile, this type of foundation can not only save materials and cut cost, but also can increase the bearing capacity greatly; so its application prospect is wide. Through model tests, the influences of anchor space, anchor length and anchor number on the bearing capacity of geo-reforcement foundation are analyzed; and some preliminary studies of the bearing mechanism of geo-reforcement foundation are made. The conclusions are as follows: the bearing behavior of geo-reforcement foundation is different from that of straight pile; the anchor can not only increase the side resistance of geo-reforcement foundation, but also increase the tip resistance to some extent. When the load on the pile top is the same, the displacement of geo-reforcement foundation is much less than that of normal straight pile; compared with large diameter pile with the same volumn, geo-reforcement foundation can greatly improve the foundation bearing capacity, reduce the settlement; when the anchor space is in some range, it effects the ultimate bearing capacity smally, while functions greatly on the ultimate side resistance; existing a critical anchor length, when anchor length is the critical length, its utilization effect is best; the ultimate bearing capacity of geo-reforcement foundation varies when the anchor number is different; and we can gain a satisfying bearing capacity increment by increase the anchor number appropriately.

Key words: geo-reforcement foundation, model test, bearing capacity, bearing mechanism

CLC Number: 

  • TU 473.1+1
[1] WANG Guo-hui, CHEN Wen-hua, NIE Qing-ke, CHEN Jun-hong, FAN Hui-hong, ZHANG Chuan, . Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests [J]. Rock and Soil Mechanics, 2020, 41(2): 399-407.
[2] LEI Hua-yang, HU Yao, LEI Shuang-hua, QI Zi-yang, XU Ying-gang, . Analysis of microstructure characteristics of air-booster vacuum preloading for ultra-soft dredger fills [J]. Rock and Soil Mechanics, 2019, 40(S1): 32-40.
[3] DAI Guo-liang, ZHU Wen-bo, GUO Jing, GONG Wei-ming, ZHAO Xue-liang, . Experiments on vertical uplift bearing capacity of suction caisson foundation in soft clay [J]. Rock and Soil Mechanics, 2019, 40(S1): 119-126.
[4] YU Yi-fan, WANG Ping, WANG Hui-juan, XU Shu-ya, GUO Hai-tao, . Physical model test of seismic dynamic response to accumulative landslide [J]. Rock and Soil Mechanics, 2019, 40(S1): 172-180.
[5] CHEN Yu-long, UCHIMURA Taro, . Early warning of rainfall-induced landslides based on elastic wave velocity [J]. Rock and Soil Mechanics, 2019, 40(9): 3373-3386.
[6] WANG Qin-ke, MA Jian-lin, CHEN Wen-long, YANG Yan-xin, HU Zhong-bo, . Centrifugal model tests and calculation method of uplift bearing capacity of rock-socketed pedestal pile overburden soil [J]. Rock and Soil Mechanics, 2019, 40(9): 3405-3415.
[7] LU Liang, SHI Tong-hui, YANG Dong, . Control effect of uneven settlement of subgrade by composited method of replacement load shedding and reinforced embankment [J]. Rock and Soil Mechanics, 2019, 40(9): 3474-3482.
[8] ZHANG Lei, WANG Ning-wei, JING Li-ping, FANG Chen, DONG Rui, . Comparative experiments of different electrode materials on electro-osmotic consolidation [J]. Rock and Soil Mechanics, 2019, 40(9): 3493-3501.
[9] ZHANG Yi-hu, WU Ai-qing, ZHOU Huo-ming, WANG Shuai, LUO Rong, FAN Lei. Review of bearing capacity and deformation characteristics of tunnel- type anchorage for suspension bridge [J]. Rock and Soil Mechanics, 2019, 40(9): 3576-3584.
[10] CAI Yu, XU Lin-rong, ZHOU De-quan, DENG Chao, FENG Chen-xi, . Model test research on method of self-balance and traditional static load [J]. Rock and Soil Mechanics, 2019, 40(8): 3011-3018.
[11] SUN Fei, ZHANG Zhi-qiang, YI Zhi-wei. Model experimental study of the influence of normal fault with stick-slip dislocation on subway tunnel structure [J]. Rock and Soil Mechanics, 2019, 40(8): 3037-3044.
[12] ZHOU Dong, LIU Hang-long, ZHANG Wen-gang, DING Xuan-ming, YANG Chang-you, . Transparent soil model test on the displacement field of soil around single passive pile [J]. Rock and Soil Mechanics, 2019, 40(7): 2686-2694.
[13] YUAN Wei, LIU Shang-ge, NIE Qing-ke, WANG Wei, . An approach for determining the critical thickness of the karst cave roof at the bottom of socketed pile based on punch failure mode [J]. Rock and Soil Mechanics, 2019, 40(7): 2789-2798.
[14] MU Rui, PU Shao-yun, HUANG Zhi-hong, LI Yong-hui, ZHENG Pei-xin, LIU Yang, LIU Ze, ZHENG Hong-chao, . Determination of ultimate bearing capacity of uplift piles in combined soil and rock masses [J]. Rock and Soil Mechanics, 2019, 40(7): 2825-2837.
[15] ZHAO Xiao-yan, FAN Yu-fei, LIU Liang, JIANG Chu-sheng, . Model test on potential failure surface characteristics of railway stepped reinforced soil retaining wall [J]. Rock and Soil Mechanics, 2019, 40(6): 2108-2118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[2] YANG Guang, SUN Xun, YU Yu-zhen, ZHANG Bing-yin. Experimental study of mechanical behavior of a coarse-grained material under various stress paths[J]. , 2010, 31(4): 1118 -1122 .
[3] ZHANG Chang-guang,ZHANG Qing-he,ZHAO Jun-hai. Unified solutions of shear strength and earth pressure for unsaturated soils[J]. , 2010, 31(6): 1871 -1876 .
[4] HU Xiu-hong,WU Fa-quan. Research on two-parameter negative exponential distribution of discontinuity spacings in rock mass[J]. , 2009, 30(8): 2353 -2358 .
[5] LI Wei-chao, XIONG Ju-hua, YANG Min. Improved method for calculating anti-overturning safety factor of cement-soil retaining wall in layered soil[J]. , 2011, 32(8): 2435 -2440 .
[6] ZHANG Gui-min , LI Yin-ping , SHI Xi-lin , YANG Chun-he , WANG Li-juan. Research on a model material preparation method for alternate layered rock mass and preliminary experiment[J]. , 2011, 32(S2): 284 -289 .
[7] LI Shu-cai , ZHAO Yan , XU Bang-shu , LI Li-ping , LIU Qin , WANG Yu-kui . Study of determining permeability coefficient in water inrush numerical calculation of subsea tunnel[J]. , 2012, 33(5): 1497 -1504 .
[8] Lü Ya-ru , DING Xuan-ming , SUN Jia , KONG Gang-qiang . Analysis of ultimate bearing capacity of X-section cast-in-place concrete pile composite foundation under rigid load[J]. , 2012, 33(9): 2691 -2696 .
[9] WANG Hong-xin , SUN Yu-yong . Test study and bar system FEM for foundation pits considering excavation width[J]. , 2012, 33(9): 2781 -2787 .
[10] LIU Fei-yu , YU Wei , CAI Yuan-qiang , ZHANG Meng-xi . Model test and numerical analysis of geogrid-reinforced pile-supported foundation[J]. , 2012, 33(S1): 244 -250 .