›› 2011, Vol. 32 ›› Issue (10): 2944-2950.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Analytical solution for consolidation by vertical drains considering actual shape of influence zone

XIE Kang-he, YU Kun, TONG Lei, WANG Kun   

  1. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
  • Received:2011-02-03 Online:2011-10-10 Published:2011-10-13

Abstract: In view of the shortcomings that the influence zone of vertical drain is always assumed to be a circle in the existing analytical consolidation theories for vertical drains; the consolidation by vertical drains installed in a regular triangle pattern with a regular hexagon shape of influence zone was studied. By establishing new consolidation equation and introducing new boundary conditions, the general analytical solutions accounting for variation of soil horizontal permeability coefficient were derived. Then, according to three types of variation patterns of the horizontal permeability, the corresponding solutions were obtained. Furthermore, the influences of three main dimensionless parameters on the consolidation behavior were analyzed, and the obtained solutions were compared with the existing ones. The results show that the greater the size of influence zone or disturbed smear zone is, the slower the consolidation is; the less the ratio of the maximum to the minimum horizontal permeability coefficient of soil is, the faster the consolidation is; under the same conditions, the consolidation of pattern two considering a linearly changed permeability coefficient within the disturbed zone is the fastest and the solutions of pattern one considering a constant permeability coefficient within the disturbed zone are very close to the existing analytical ones, which indicated that the assumption that the influence zone of vertical drain is a circle adopted in the existing theories is reasonable

Key words: vertical drains, consolidation, influence zone of regular hexagon, horizontal permeability coefficient

CLC Number: 

  • TU 431
[1] TU Yuan, WANG Kui-hua, ZHOU Jian, HU An-feng, . Application of effective stress method and effective consolidation stress method for strength calculation in preloading ground [J]. Rock and Soil Mechanics, 2020, 41(2): 645-654.
[2] CHENG Tao, YAN Ke-qin, HU Ren-jie, ZHENG Jun-jie, ZHANG Huan, CHEN He-long, JIANG Zhi-jie, LIU Qiang, . Analytical method for quasi-two-dimensional plane strain consolidation problem of unsaturated soil [J]. Rock and Soil Mechanics, 2020, 41(2): 453-460.
[3] MENG Yu-han, ZHANG Bi-sheng, CHEN Zheng, MEI Guo-xiong, . Consolidation analysis of foundation with sand blankets under ramp loading [J]. Rock and Soil Mechanics, 2020, 41(2): 461-468.
[4] LIU Zhong-yu, XIA Yang-yang, ZHANG Jia-chao, ZHU Xin-mu. One-dimensional elastic visco-plastic consolidation analysis of saturated clay considering Hansbo’s flow [J]. Rock and Soil Mechanics, 2020, 41(1): 11-22.
[5] ZHANG Lei, WANG Ning-wei, JING Li-ping, FANG Chen, DONG Rui, . Comparative experiments of different electrode materials on electro-osmotic consolidation [J]. Rock and Soil Mechanics, 2019, 40(9): 3493-3501.
[6] ZHANG Yu-guo, WAN Dong-yang, ZHENG Yan-lin, HAN Shuai, YANG Han-yue, DUAN Meng-meng. Analytical solution for consolidation of vertical drain under vacuum preloading considering the variation of radial permeability coefficient [J]. Rock and Soil Mechanics, 2019, 40(9): 3533-3541.
[7] QIU Jin-wei, PU He-fu, CHEN Xun-long, LÜ Wei-dong, LI Lei. Coupled analysis of self-weight consolidation and contaminant transport in confined disposal of contaminated sediments [J]. Rock and Soil Mechanics, 2019, 40(8): 3090-3098.
[8] ZHANG Zhi-guo, HUANG Mao-song, YANG Xuan, . Analytical solution for dissipation of excess pore water pressure and soil consolidation settlement induced by tunneling under the influence of long-term leakage [J]. Rock and Soil Mechanics, 2019, 40(8): 3135-3144.
[9] LI Chen, WU Wen-bing, MEI Guo-xiong, ZONG Meng-fan, LIANG Rong-zhu, . Analytical solution for 1D degradation-consolidation of municipal solid waste under different drainage conditions [J]. Rock and Soil Mechanics, 2019, 40(8): 3071-3080.
[10] LIU Zhong-yu, CUI Peng-lu, ZHENG Zhan-lei, XIA Yang-yang, ZHANG Jia-chao. Analysis of one-dimensional rheological consolidation with flow described by non-Newtonian index and fractional-order Merchant’s model [J]. Rock and Soil Mechanics, 2019, 40(6): 2029-2038.
[11] YANG De-huan, YAN Rong-tao, WEI Chang-fu, PAN Xue-ying, ZHANG Qin, . A method for determining average intergranular stresses in saturated clays [J]. Rock and Soil Mechanics, 2019, 40(6): 2075-2084.
[12] GONG Wen-hui, ZHAO Xu-dong, QIU Jin-wei, LI Yi, YANG Han. Nonlinear analysis of one-dimensional consolidation of saturated clay including dead-weight effects and large strain [J]. Rock and Soil Mechanics, 2019, 40(6): 2099-2107.
[13] JIA Rui, LEI Hua-yang, . Experimental study of anisotropic consolidation behavior of Ariake clay [J]. Rock and Soil Mechanics, 2019, 40(6): 2231-2238.
[14] LUO Qing-zi, CHEN Xiao-ping, YUAN Bing-xiang, FENG De-luan, . Deformation behavior and consolidation model of soft soil under flexible lateral constraint [J]. Rock and Soil Mechanics, 2019, 40(6): 2264-2274.
[15] WANG Peng-fei, TAN Wen-hui, MA Xue-wen, LI Zi-jian, LIU Jing-jun, WU Yang-fan, . Relationship between strength parameter and water content of fault gouge with different degrees of consolidation [J]. Rock and Soil Mechanics, 2019, 40(5): 1657-1662.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Wei,LI Xing-zhao. Analysis method of rigid piled raft foundation under vertical loading[J]. , 2009, 30(11): 3441 -3446 .
[2] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[3] . Numerical implementation of discontinuities in dual media 3D model for thermo-hydro-mechanical coupling[J]. , 2010, 31(2): 638 -644 .
[4] XU Chong,LIU Bao-guo,LIU Kai-yun,GUO Jia-qi. Slope angle intelligent design based on Gaussian process with combinatorial kernel function[J]. , 2010, 31(3): 821 -826 .
[5] LIU Gong-xun, LUAN Mao-tian, GUO Ying, WANG Zhong-tao, HE Lin, ZHANG Jun-fe. Experimental study of threshold cyclic stress ratio of undisturbed saturated soft clay in the Yangtze estuary under complex stress conditions[J]. , 2010, 31(4): 1123 -1129 .
[6] ZHU Zhen-de,SUN Lin-zhu,WANG Ming-yang. Damping ratio experiment and mesomechanical analysis of deformation failure mechanism on rock under different frequency cyclic loadings[J]. , 2010, 31(S1): 8 -12 .
[7] CHAI Bo, YIN Kun-long, DU Juan. Slope hazard zoning based on rough set and fuzzy pattern recognition[J]. , 2010, 31(10): 3203 -3208 .
[8] ZHANG You-zhen,SHI Zhi-jun,ZHANG Jing. Experimental study of load distribution of anchoring section for rock bolts[J]. , 2010, 31(S2): 184 -188 .
[9] WEN Sen,YANG Sheng-qi. Study of deformations of surrounding rock of tunnel based on Hoek-Brown criterion[J]. , 2011, 32(1): 63 -69 .
[10] QIU Dao-hong, CHEN Jian-ping, XIAO Yun-hua, QIN Sheng-wu. Study of rockburst prediction of separated tunnel excavated asynchronoushy[J]. , 2009, 30(2): 515 -520 .