›› 2011, Vol. 32 ›› Issue (5): 1546-1552.

• Numerical Analysis • Previous Articles     Next Articles

Study of bottom-hole stress field with differential pressure of 3D in-situ stress under different drilling conditions

CHANG De-yu, LI Gen-sheng, SHEN Zhong-hou, HUANG Zhong-wei,   

  1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
  • Received:2010-10-01 Online:2011-05-10 Published:2011-09-23

Abstract: The bottom-hole differential pressure and the three-dimensional in-situ differential stress are the main factors during drilling that affect the distribution of the bottom-hole rock stress; and then affect the drilling speed. The purpose of the article is to quantitatively study the effect of the three-dimensional in-situ stress on the bottom-hole stress distribution under the overbalanced, balanced, underbalanced and air drilling condition. On the basis of the mechanical analysis of the bottom-hole rock, the fluid-solid coupling model with the factors of the three-dimensional in-situ stress of the normal fault, fluid column pressure and pore pressure is set up, without analytical solution of the model; and then the numerical solution method is used to resolve it. The results show that the maximum principal stresses of the bottom-hole surface under different drilling conditions are the same; the minor principal stress increases with the increase of the bottom-hole differential pressure. The minor principal stress decreases with the increase of the horizontal maximum in-situ stress, and keeps stable when the horizontal minimum in-situ stress changes under differential drilling condition. The maximum principal stress of the bottom-hole surface firstly decreases with the increase of the horizontal minimum in-situ stress and keeps stable with the existence of the differential pressure and it keeps stable during air drilling while the horizontal minimum in-situ stress changes, and keeps stable when the horizontal maximum in-situ stress changes under differential drilling condition. Distribution of the bottom-hole stress field of the reverse fault and strike-slip fault is to be studied. Quantitative study of the bottom-hole stress distribution with differential pressure of bottom-hole and three-dimensional in-situ stress provides a numerical stimulation method for study of bottom-hole stress field under actual drilling condition and is the theoretical basis for faster and more efficient drilling.

Key words: bottom-hole differential pressure, in-situ stress, pore pressure, fluid-solid coupling, stress field, rock breaking mechanism

CLC Number: 

  • TE 21
[1] CHENG Tao, YAN Ke-qin, HU Ren-jie, ZHENG Jun-jie, ZHANG Huan, CHEN He-long, JIANG Zhi-jie, LIU Qiang, . Analytical method for quasi-two-dimensional plane strain consolidation problem of unsaturated soil [J]. Rock and Soil Mechanics, 2020, 41(2): 453-460.
[2] YU Li, LÜ Cheng, DUAN Ru-yu, WANG Ming-nian, . Upper bound limit analysis of three-dimensional collapse mechanism of shallow buried soil tunnel under pore pressure based on nonlinear Mohr-Coulomb criterion [J]. Rock and Soil Mechanics, 2020, 41(1): 194-204.
[3] WANG Chuan-ying, WANG Yi-teng, HAN Zeng-qiang, WANG Jin-chao, ZOU Xian-jian, HU Sheng, . An in-situ stress measurement method based on borehole shape analysis [J]. Rock and Soil Mechanics, 2019, 40(S1): 549-556.
[4] DING Chang-dong, ZHANG Yang, YANG Xiang-tong, HU Da-wei, ZHOU Hui, LU Jing-jing, . Permeability evolution of tight sandstone under high confining pressure and high pore pressure and its microscopic mechanism [J]. Rock and Soil Mechanics, 2019, 40(9): 3300-3308.
[5] TANG Xiao-wu, LIU Jiang-nan, YANG Xiao-qiu, YU Yue. Theoretical study of dynamic pore water pressure dissipation characteristics of open-hole pipe pile [J]. Rock and Soil Mechanics, 2019, 40(9): 3335-3343.
[6] ZHANG Qiang, LI Xiao-chun, ZHOU Ying-bo, SHI Lu, BAI Bing, . Shear behavior of the Triassic sandstone in Sichuan under high pore pressure of H2O/CO2 conditions [J]. Rock and Soil Mechanics, 2019, 40(8): 3028-3036.
[7] ZHANG Feng, CHEN Guo-xing, WU Qi, ZHOU Zheng-long. Experimental study on undrained behavior of saturated silt subject to wave loading [J]. Rock and Soil Mechanics, 2019, 40(7): 2695-2702.
[8] ZHAO Ding-feng, LIANG Ke, CHEN Guo-xing, XIONG Hao, ZHOU Zheng-long, . Experimental investigation on a new incremental pore pressure model characterized by shear-volume strain coupling effect [J]. Rock and Soil Mechanics, 2019, 40(5): 1832-1840.
[9] DENG Ke, CHEN Ming, LU Wen-bo, YAN Peng, LENG Zhen-dong, . Investigation of influence of in-situ stress on presplitting induced fracture in abutment slot [J]. Rock and Soil Mechanics, 2019, 40(3): 1121-1128.
[10] GU Jian-xiao, YANG Jun-yan, WANG Yong, LÜ Hai-bo, . Simulation of carbonate sand with triaxial tests data based on modified model of South water double yield surface [J]. Rock and Soil Mechanics, 2019, 40(12): 4597-4606.
[11] LENG Wu-ming, ZHANG Qi-shu, XU Fang, NIE Ru-song, YANG Qi, AI Xi, . Diffusion behavior of additional stress perpendicular to the slope surface in a new prestressed subgrade [J]. Rock and Soil Mechanics, 2019, 40(10): 3987-4000.
[12] WANG Li-yan, GONG Wen-xue, CAO Xiao-ting, JIANG Peng-ming, WANG Bing-hui. Anti-liquefaction characteristics of gravel steel slag [J]. Rock and Soil Mechanics, 2019, 40(10): 3741-3750.
[13] XU Cheng-shun, DOU Peng-fei, DU Xiu-li, CHEN Su, HAN Jun-yan, . Large-scale shaking table model test of liquefiable free field [J]. Rock and Soil Mechanics, 2019, 40(10): 3767-3777.
[14] ZHOU En-quan, WANG Qiong, ZONG Zhi-xin, LU Jian-fei. Cyclic triaxial tests on dynamic characteristics of saturated rubber-sand mixture [J]. Rock and Soil Mechanics, 2019, 40(10): 3797-3804.
[15] HUANG Jue-hao, CHEN Jian, KONG Ling-zhi, LIU Fu-sheng, KE Wen-hui, QIU Yue-feng, , LI Jian-bin, . Experimental study of dynamic behaviors of saturated soft clay considering coupling effects of cyclic confining pressure and vibration frequency [J]. Rock and Soil Mechanics, 2019, 40(1): 173-182.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[3] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[4] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[5] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[6] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[7] LIU Zhen-ping, HE Huai-jian, ZHU Fa-hua. Study of technology of fast 3D modeling and visualization based on borehole data[J]. , 2009, 30(S1): 260 -266 .
[8] WEI Hou-zhen, YAN Rong-tao, WEI Chang-fu, WU Er-lin, CHEN Pan, TIAN Hui-hui. Summary of researches for phase-equilibrium of natural gas hydrates in bearing sediments[J]. , 2011, 32(8): 2287 -2294 .
[9] ZHAO Yue-tang, LIN Jia-wei, SHI Lei. Research of spalling under impulse loading[J]. , 2011, 32(S2): 122 -126 .
[10] WANG Guo-cui, YANG Min. Nonlinear analysis of laterally loaded piles in sand[J]. , 2011, 32(S2): 261 -267 .