›› 2012, Vol. 33 ›› Issue (11): 3225-3229.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Research on fractal characteristics of marble fragments subjected to impact loading

XU Jin-yu1, 2,LIU Shi1   

  1. 1. Department of Airfield and Building Engineering, Air Force Engineering University, Xi’an 710038, China; 2. College of Mechanics and Civil Architecture, Northwest Polytechnic University, Xi’an 710072, China
  • Received:2012-07-09 Online:2012-11-12 Published:2012-11-14

Abstract: The size distribution of marble fragmentation subjected to impact loading is analyzed statistically from the view of fractal geometry. The result indicates that the fragment-size distribution of fragments has fractal property. Fractal dimension can quantitatively describe the fragment distribution characteristics of fracture process of marble; and can reflect the fragmentation degree reasonably. There is obvious relativity between the average fragment-size of marble and impact loading speed; but the relativity declines with the increase of loading speed. Subsequently, the relationship between the specific energy absorption and fractal dimension is established. It is illustrated that energy absorbency of marble is crucial factors influencing the changes of fractal dimension. The fractal dimension is an appropriate parameter which generally indicates the whole process of rock fragmentation.

Key words: impact experiment, fragment-size distribution, fractal dimension, specific energy absorption

CLC Number: 

  • TU 452
[1] SUN Hong, SONG Chun-yu, TENG Mu-wei, GE Xiu-run. Pore evolution characteristics of soft clay under loading [J]. Rock and Soil Mechanics, 2020, 41(1): 141-146.
[2] ZHAO Guo-yan, LI Zhen-yang, WU Hao, WANG En-jie, LIU Lei-lei. Dynamic failure characteristics of sandstone with non-penetrating cracks [J]. Rock and Soil Mechanics, 2019, 40(S1): 73-81.
[3] ZHANG Xiao-yan, CAI Yan-yan, ZHOU Hao-ran, YANG Yang, LI Yu-long, . Shear behaviors and fractal dimensions of carol sand at large shear strains [J]. Rock and Soil Mechanics, 2019, 40(2): 610-615.
[4] XIAO Xiao-chun, FAN Yu-feng, WU Di, DING Xin, WANG Lei, ZHAO Bao-you, . Energy dissipation feature and rock burst risk assessment in coal-rock combinations [J]. Rock and Soil Mechanics, 2019, 40(11): 4203-4212.
[5] ZENG Yin, LIU Jian-feng, ZHOU Zhi-wei, WU Chi, LI Zhi-cheng, . Creep acoustic emission and damage evolution of salt rock under uniaxial compression [J]. Rock and Soil Mechanics, 2019, 40(1): 207-215.
[6] XIANG Gao, LIU Jian-feng, LI Tian-yi, XU-YANG Meng-di, DENG Chao-fu, WU Chi,. Study of fractal and damage characteristic in the deformation and failure process of salt rack based on acoustic emission [J]. , 2018, 39(8): 2905-2912.
[7] MA Qin-yong, GAO Chang-hui,. Energy absorption and fractal characteristics of basalt fiber-reinforced cement- soil under impact loads [J]. , 2018, 39(11): 3921-3928.
[8] CHEN Yi, ZHANG Hu-yuan, YANG Long, . Analogy study on evolution of microstructure of earthen monument during natural weathering process [J]. , 2018, 39(11): 4117-4124.
[9] YANG Peng, HUA Xin-zhu, LIU Qin-jie, YANG Ming, CHENG Shi-xing, WU Biao,. Experimental study of dynamic evolution characteristic of floor fractal dimension of gob-side entry retaining with large section in deep mine [J]. , 2017, 38(S1): 351-358.
[10] WANG Zhi-gang, GUO Xiao-fei. Study of roof fissures of mining induced roadway in Shuanghe Coal Mine based on fractal theory [J]. , 2017, 38(8): 2377-2384.
[11] XIANG Guo-sheng, XU Yong-fu, CHEN Tao, JIANG Hao,. Fractal model for swelling deformation of bentonite in salt solution [J]. , 2017, 38(1): 75-80.
[12] YAO Shao-feng, ZHANG Zhen-nan, GE Xiu-run, QIU Yi-ping, XU Jin-ming,. Correlation between fracture energy and geometrical characteristic of mesostructure of marble [J]. , 2016, 37(8): 2341-2346.
[13] YU Bang-yong,CHEN Zhan-qing,WU Jiang-yu,LI Qiang,DING Qi-le,. Experimental study of compaction and fractal properties of grain size distribution of saturated crushed mudstone with different gradations [J]. , 2016, 37(7): 1887-1894.
[14] WU Ying,MA Gang,ZHOU Wei,YANG Li-fu. Optimization of gradation of rockfill materials based on the fractal theory [J]. , 2016, 37(7): 1977-1985.
[15] ZHAO Na, ZUO Yong-zhen, WANG Zhan-bin, YU Sheng-guan. Grading scale method for coarse-grained soils based on fractal theory [J]. , 2016, 37(12): 3513-3519.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[3] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[4] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[5] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[6] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[7] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[8] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[9] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[10] WEI Hou-zhen, YAN Rong-tao, WEI Chang-fu, WU Er-lin, CHEN Pan, TIAN Hui-hui. Summary of researches for phase-equilibrium of natural gas hydrates in bearing sediments[J]. , 2011, 32(8): 2287 -2294 .