›› 2012, Vol. 33 ›› Issue (2): 415-421.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Research on anti-pulling force of anchor of flexible supporting system with prestressed anchors

ZHOU Yong1, 2, ZHU Yan-peng1, 2   

  1. 1. School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China; 2. Key Laboratory of Disaster Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
  • Received:2010-07-16 Online:2012-02-10 Published:2012-02-14

Abstract: Flexible supporting system with prestressed anchors is a new technique developed from anchored retaining wall for retaining deep foundation pit or improving stability of existing slope. In order to further study the behaviors and working mechanism of the flexible supporting system with prestressed anchors, the anti-pulling force of anchor is analyzed and studied. The improved solution method of anti-pulling force of frictional grouting anchor is proposed. The study indicates that in the supporting system of flexible supporting structure with prestressed anchors, the anti-pulling force should be decomposed into two parts: the anchor-soil interaction and the soil self-supporting. In the supporting system, anchor, as a force transfer component, firstly transfers the anti-pulling force coming from the soil self-supporting; then provides other anti-pulling force by the anchor-soil interaction. The two anti-pulling forces are solved theoretically; and the theoretical calculation formulae are given respectively; then the total anti-pulling force of anchor is determined. Two case studies are introduced to prove the rationality of the solution of anti-pulling force of anchor. The values of limit anti-pulling force of anchor based on the improved solution method are larger than these of the traditional methods; and the concept of anti-pulling force solved according to the improved solution method is more clear, which further enriches the working mechanism of prestressed anchor supporting system from theoretical aspect and provides the scientific basis for engineering practices.

Key words: soil mechanics, anchor supporting system, anti-pulling force, anchor-soil interaction, soil self-supporting

CLC Number: 

  • TU 32
[1] LIU Jia-shun, WANG Lai-gui, ZHANG Xiang-dong, YANG Jian-jun, SUN Jia-bao, . An asymptotic state constitutive model for saturated clay under partial drainage [J]. Rock and Soil Mechanics, 2020, 41(2): 485-491.
[2] LIU Zhong-yu, XIA Yang-yang, ZHANG Jia-chao, ZHU Xin-mu. One-dimensional elastic visco-plastic consolidation analysis of saturated clay considering Hansbo’s flow [J]. Rock and Soil Mechanics, 2020, 41(1): 11-22.
[3] LIU Jia-shun, WANG Lai-gui, ZHANG Xiang-dong, LI Xue-bin, ZHANG Jian-jun, REN Kun, . Cyclic triaxial test on saturated silty clay under partial drainage condition with variable confining pressure [J]. Rock and Soil Mechanics, 2019, 40(4): 1413-1419.
[4] WANG Li-qin, SHAO Sheng-jun, WANG Shuai, ZHAO Cong, SHI Peng-xin, ZHOU Biao, . Compression curve characteristic of undisturbed loess [J]. Rock and Soil Mechanics, 2019, 40(3): 1076-1084.
[5] WANG Li-qin, SHAO Sheng-jun, ZHAO Cong, LU Zhong-gang,. Effect of initial structural property of loess on its compressive yield [J]. , 2018, 39(9): 3223-3228.
[6] CHOU Ya-ling, JIA Shu-sheng, ZHANG Qing-hai, CAO Wei, SEHNG Yu,. The influence of freeze-thaw action on loess collapsibility coefficient considering soil structure [J]. , 2018, 39(8): 2715-2722.
[7] CHEN Le-qiu, ZHANG Jia-sheng, CHEN Jun-hua, CHEN Ji-guang,. Testing of static and dynamic strength properties of cement-improved argillaceous-slate coarse-grained soil [J]. , 2017, 38(7): 1903-1910.
[8] PU Shao-yun, RAO Jun-ying, YANG Kai-qiang, HUANG Zhi-hong, LI Yong-hui,CHEN Ze-nan, LI Qin, LIU Han-qing,. Deformation characteristics of soil under cyclic loading [J]. , 2017, 38(11): 3261-3270.
[9] MA Dong-dong, MA Qin-yong, YUAN Pu, YAO Zhao-ming, . SHPB tests on artificial frozen sand and its analysis under active confining pressure [J]. , 2017, 38(10): 2957-2961.
[10] LIU Zhong-yu, CHEN Jie, LI Dong-yang,. Calculation of active earth pressure against rigid retaining wall considering shear stress [J]. , 2016, 37(9): 2443-2450.
[11] HE Chun-can , HU Xin-li , GONG Hui , TAN Fu-lin , ZHANG Han , ZHANG Xiao-yong,. Analysis of mesoscopic damage and mechanical behaviors of soil-rock mixture based on template database of soft and hard rocks [J]. , 2016, 37(10): 2993-3002.
[12] JIANG Zhong-ming , LONG Fang , XIONG Xiao-hu , FENG Shu-rong , ZHONG Hui-ya ,. Study of calculation methods of acting force of seepage in slope stability analysis [J]. , 2015, 36(9): 2478-2486.
[13] WANG Shi-chuan, SUN Ben-jie, SHAO Yan. Modified computational method for active earth pressure [J]. , 2015, 36(5): 1375-1379.
[14] MEI Yuan , HU Chang-ming , WEI Yi-feng , ZHANG Wen-cui , YUAN Yi-li , Wang Xue-yan , . A centrifugal test study of the deformation of high backfill foundation in deep ravine of Q2 and Q3 loess [J]. , 2015, 36(12): 3473-3481.
[15] LIU Xiao-lei , JIA Yong-gang , ZHENG Jie-wen,. In situ experiment of wave-induced excess pore pressure in the seabed sediment in Yellow River estuary [J]. , 2015, 36(11): 3055-3062.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[2] ZHANG Wen-jie,CHEN Yum-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. , 2010, 31(1): 211 -215 .
[3] NIE Ying, LUAN Mao-tian, TANG Xiao-wei, GUO Ying, ZHANG Zhen-dong. Study of monotonic and coupling cyclic shear characteristics of overconsolidated clay[J]. , 2009, 30(9): 2616 -2622 .
[4] ZHAN Yong-xiang, JIANG Guan-lu. Study of dynamic characteristics of soil subgrade bed for ballastless track[J]. , 2010, 31(2): 392 -396 .
[5] GAO Guang-yun, ZHAO Yuan-yi, GAO Meng, YANG Cheng-bin. Improved calculation for lateral dynamic impedance of pile groups in layered soil[J]. , 2010, 31(2): 509 -515 .
[6] LU Li, ZHANG Si-ping, ZHANG Yong-xing, HU Dai-wen, WU Shu-guang. Field pull-out test and behavior analysis of compression type rock anchor cables[J]. , 2010, 31(8): 2435 -2440 .
[7] WANG Wei-ming, SUN Rui, CAO Zhen-zhong, YUAN Xiao-ming. Comparative study of features of liquefied sites at home and abroad[J]. , 2010, 31(12): 3913 -3918 .
[8] YANG Zhao-liang, SUN Guan-hua, ZHENG Hong. Global method for stability analysis of slopes based on Pan’s maximum principle[J]. , 2011, 32(2): 559 -563 .
[9] HU Hai-jun, JIANG Ming-jing, ZHAO Tao, PENG Jian-bing, LI Hong. Effects of specimen-preparing methods on tensile strength of remolded loess[J]. , 2009, 30(S2): 196 -199 .
[10] XU Chong, LIU Bao-guo, LIU Kai-yun, GUO Jia-qi. Intelligent analysis model of landslide displacement time series based on coupling PSO-GPR[J]. , 2011, 32(6): 1669 -1675 .