›› 2012, Vol. 33 ›› Issue (2): 554-557.

• Geotechnical Engineering • Previous Articles     Next Articles

Fisher discriminant analysis model of sand liquefaction and its application

LIU Nian-ping1, 3, WANG Hong-tu1, 2, YUAN Zhi-gang1, LIU Jing-cheng1   

  1. 1. Key Lab for Exploitation of China Southwestern Resources & Environmental Disaster Control Engineering, Ministry of Education, Chongqing University, Chongqing 400030, China; 2. State and Local Joint Engineering Laboratory of Methane Drainage in Complex Coal Gas Seam, Chongqing University, Chongqing 400030, China; 3. College of Environment and Resources, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
  • Received:2010-07-22 Online:2012-02-10 Published:2012-02-14

Abstract: Based on Fisher discriminant theory, the Fisher discriminant analysis (FDA) model was established for forecasting the possibility of sand liquefaction. Eight factors were selected such as seismic intensity, epicenteral distance, groundwater level, sand depth, blow number of standard penetration test, mean granular diameter, coefficient of nonuniformity, ratio of shearing stress to effective overburden stress as the discriminant factors of the FDA model. A series of experimental data of sand liquefaction were taken as the training and testing samples, then some other practical data were used to verify this model. The results show that the FDA model is a simple, feasible and high accurate prediction method; and it is one of the efficient methods for solving prediction of sand liquefaction.

Key words: soil mechanics, sand liquefaction;prediction, Fisher discriminant analysis(FDA)

CLC Number: 

  • TU 454
[1] LIU Jia-shun, WANG Lai-gui, ZHANG Xiang-dong, YANG Jian-jun, SUN Jia-bao, . An asymptotic state constitutive model for saturated clay under partial drainage [J]. Rock and Soil Mechanics, 2020, 41(2): 485-491.
[2] LIU Zhong-yu, XIA Yang-yang, ZHANG Jia-chao, ZHU Xin-mu. One-dimensional elastic visco-plastic consolidation analysis of saturated clay considering Hansbo’s flow [J]. Rock and Soil Mechanics, 2020, 41(1): 11-22.
[3] LIU Jia-shun, WANG Lai-gui, ZHANG Xiang-dong, LI Xue-bin, ZHANG Jian-jun, REN Kun, . Cyclic triaxial test on saturated silty clay under partial drainage condition with variable confining pressure [J]. Rock and Soil Mechanics, 2019, 40(4): 1413-1419.
[4] WANG Li-qin, SHAO Sheng-jun, WANG Shuai, ZHAO Cong, SHI Peng-xin, ZHOU Biao, . Compression curve characteristic of undisturbed loess [J]. Rock and Soil Mechanics, 2019, 40(3): 1076-1084.
[5] WANG Li-qin, SHAO Sheng-jun, ZHAO Cong, LU Zhong-gang,. Effect of initial structural property of loess on its compressive yield [J]. , 2018, 39(9): 3223-3228.
[6] CHOU Ya-ling, JIA Shu-sheng, ZHANG Qing-hai, CAO Wei, SEHNG Yu,. The influence of freeze-thaw action on loess collapsibility coefficient considering soil structure [J]. , 2018, 39(8): 2715-2722.
[7] CHEN Le-qiu, ZHANG Jia-sheng, CHEN Jun-hua, CHEN Ji-guang,. Testing of static and dynamic strength properties of cement-improved argillaceous-slate coarse-grained soil [J]. , 2017, 38(7): 1903-1910.
[8] PU Shao-yun, RAO Jun-ying, YANG Kai-qiang, HUANG Zhi-hong, LI Yong-hui,CHEN Ze-nan, LI Qin, LIU Han-qing,. Deformation characteristics of soil under cyclic loading [J]. , 2017, 38(11): 3261-3270.
[9] MA Dong-dong, MA Qin-yong, YUAN Pu, YAO Zhao-ming, . SHPB tests on artificial frozen sand and its analysis under active confining pressure [J]. , 2017, 38(10): 2957-2961.
[10] LIU Zhong-yu, CHEN Jie, LI Dong-yang,. Calculation of active earth pressure against rigid retaining wall considering shear stress [J]. , 2016, 37(9): 2443-2450.
[11] HE Chun-can , HU Xin-li , GONG Hui , TAN Fu-lin , ZHANG Han , ZHANG Xiao-yong,. Analysis of mesoscopic damage and mechanical behaviors of soil-rock mixture based on template database of soft and hard rocks [J]. , 2016, 37(10): 2993-3002.
[12] JIANG Zhong-ming , LONG Fang , XIONG Xiao-hu , FENG Shu-rong , ZHONG Hui-ya ,. Study of calculation methods of acting force of seepage in slope stability analysis [J]. , 2015, 36(9): 2478-2486.
[13] WANG Shi-chuan, SUN Ben-jie, SHAO Yan. Modified computational method for active earth pressure [J]. , 2015, 36(5): 1375-1379.
[14] MEI Yuan , HU Chang-ming , WEI Yi-feng , ZHANG Wen-cui , YUAN Yi-li , Wang Xue-yan , . A centrifugal test study of the deformation of high backfill foundation in deep ravine of Q2 and Q3 loess [J]. , 2015, 36(12): 3473-3481.
[15] LIU Xiao-lei , JIA Yong-gang , ZHENG Jie-wen,. In situ experiment of wave-induced excess pore pressure in the seabed sediment in Yellow River estuary [J]. , 2015, 36(11): 3055-3062.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WU Qiong, TANG Hui-ming, WANG Liang-qing, LIN Zhi-hong. Analytic solutions for phreatic line in reservoir slope with inclined impervious bed under rainfall and reservoir water level fluctuation[J]. , 2009, 30(10): 3025 -3031 .
[2] WU Chang-yu, ZHANG Wei, LI Si-shen, ZHU Guo-sheng. Research on mechanical clogging mechanism of releaf well and its control method[J]. , 2009, 30(10): 3181 -3187 .
[3] HE Fa-guo, CHEN Wen-wu, HAN Wen-feng, ZHANG Jing-ke. Correlation of microstructure indices and performance of sand solidified with polymer material SH[J]. , 2009, 30(12): 3803 -3807 .
[4] LEI Yong-sheng. Research on protective measures of City Wall and Bell Tower due to underneath crossing Xi’an Metro Line No.2[J]. , 2010, 31(1): 223 -228 .
[5] SHANG Shou-ping, SUI Xiao-xi, ZHOU Zhi-jin, LIU Fang-cheng, XIONG Wei. Study of dynamic shear modulus of granulated rubber-sand mixture[J]. , 2010, 31(2): 377 -381 .
[6] XIAO Zhong, WANG Yuan-zhan, JI Chun-ning, HUANG Tai-kun, SHAN Xu. Stability analysis of large cylindrical structure for strengthening soft foundation under wave load[J]. , 2010, 31(8): 2648 -2654 .
[7] CHAI Bo, YIN Kun-long, CHEN Li-xia, LI Yuan-yao. Analysis of slope deformation under control of rock mass structure[J]. , 2009, 30(2): 521 -525 .
[8] ZHAO Hong-bo, RU Zhong-liang, ZHANG Shi-ke. Application of support vector machine to reliability analysis of underground engineering[J]. , 2009, 30(2): 526 -530 .
[9] XU Yang, GAO Qian, LI Xin, LI Jun-hua, JIA Yun-xi. In-situ experimental study of permeability of rock and soil aggregates[J]. , 2009, 30(3): 855 -858 .
[10] ZHANG Ding-wen,LIU Song-yu,GU Chen-ying. Elastoplastic analysis of cylindrical cavity expansion with anisotropic initial stress[J]. , 2009, 30(6): 1631 -1634 .