›› 2012, Vol. 33 ›› Issue (4): 1240-1246.

• Numerical Analysis • Previous Articles     Next Articles

Development of anisotropic elasto-viscoplastic model in ABAQUS software

QIN Ya-zhou1, 2,LI Ning1, 2,XU Jian-cong1, 2   

  1. 1. Key Laboratory of Geotechnical and Underground of Ministry of Education, Tongji University, Shanghai 200092, China; 2.Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
  • Received:2011-08-01 Online:2012-04-13 Published:2012-04-26

Abstract: This paper presents an improved three-dimensional anisotropic elasto-viscoplastic constitutive model which is based on overstress theory of Perzyna and critical state theory. In this model a rotational hardening law of Wheeler is also adopted to account for initial anisotropy and changes in anisotropy due to stress. The viscoplastic strain will not occur when the stress state is located within the static yield surface. A power-type scaling function is adopted for the viscoplastic strain-rate. The constitutive model is programmed in ABAQUS software by writing UMAT subroutine, which is integrated with Return Mapping Algorithm. Anisotropically consolidated undrained (CU) triaxial creep test for Sackville clay is simulated by proposed model and the suitable integration time step is determined. Then other CU triaxial creep tests and CU triaxial constant strain rate tests are simulated. By switching the anisotropic features off, the proposed model is degraded to the isotropic model. The simulation results show (1) The CU triaxial creep tests with rotational hardening law is more accurate than isotropic model in the high level of the shear stress; (2) The CU triaxial constant strain rate tests rationally reflect that the undrained strength of soil increase with loading rate.

Key words: Anisotropic, Elastic-viscoplastic, return mapping algorithm, ABAQUS software, UMAT subroutine

CLC Number: 

  • TU 443
[1] FAN Yun-hui, ZHU Qi-zhi, NI Tao, ZHANG Kun, ZHANG Zhen-nan, . A brittle-ductile transition constitutive model based on discrete elastic tensors [J]. Rock and Soil Mechanics, 2019, 40(S1): 181-188.
[2] ZHANG Yu-wei, WENG Xiao-lin, SONG Zhan-ping, XIE Yong-li, . A modified Cam-clay model for structural and anisotropic loess [J]. Rock and Soil Mechanics, 2019, 40(3): 1030-1038.
[3] YANG Jian-min, HUO Wang-wen,. A character of elliptical regional land subsidence due to horizontal anisotropic permeability [J]. , 2018, 39(8): 2960-2976.
[4] QI Xian-yin, LI Jia-zhuo, WANG Wei,. An anisotropic permeability model of coal containing methane based on different directional modulus reduction ratios [J]. , 2018, 39(2): 635-643.
[5] LIU Yang, YANG Gang, WANG Jun-xiang, JIANG An-nan,. Mohr-Coulomb elastoplastic damage constitutive model of rock and implicit return mapping algorithm in principal stress space [J]. , 2017, 38(S1): 418-428.
[6] YANG Xu, MENG Ying-feng, LI Gao, WANG Liang, LI Cheng,. An empirical equation to estimate uniaxial compressive strength for anisotropic rocks [J]. , 2017, 38(9): 2655-2661.
[7] YAN Fu-you, CHANG Jian, LIU Zhong-yu. A return mapping implicit algorithm for coupled viscoelastic and hyperbolic Drucker-Prager plastic modeling [J]. , 2017, 38(6): 1797-1804.
[8] WANG Ren-chao, CAO Ting-ting, LIU Yan-ru. Implementations of hypoplastic model based on different time integration algorithms [J]. , 2017, 38(5): 1510-1516.
[9] FU Gui-jun, ZHANG Si-yuan, ZHANG Yu-jun. A rheological model for dual-pore-fracture rock mass and its application to finite element analysis of underground caverns [J]. , 2017, 38(2): 601-609.
[10] WANG Zhi-chao , JIN Gang , WU Xiao-feng , DENG Xu-hua , DONG Hui,. Rate-dependent deformation characteristics and time-dependent constitutive model of unsaturated compacted clay [J]. , 2016, 37(3): 719-727.
[11] JIANG Ming-jing , FU Chang , LIU Jing-de , LI Tao , . Discrete element analysis of anisotropic structured sand [J]. , 2015, 36(S1): 577-584.
[12] LIU Run , LIU Wen-bin , HONG Zhao-hui , WANG Le,. A soil resistance model for subsea pipeline global lateral buckling analysis [J]. , 2015, 36(9): 2433-2441.
[13] HOU Zhen-kun , YANG Chun-he , GUO Yin-tong , ZHANG Bao-ping ,. Experimental study on anisotropic properties of Longmaxi formation shale under uniaxial compression [J]. , 2015, 36(9): 2541-2550.
[14] WANG Jun-xiang ,JIANG An-nan , . An elastoplastic damage constitutive model of rock and its application to tunnel engineering [J]. , 2015, 36(4): 1147-1158.
[15] WANG Jun-xiang , JIANG An-nan , . Establishing strain softening constitutive model of rock and solution of NR-AL method [J]. , 2015, 36(2): 393-402.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[2] DONG Cheng, ZHENG Ying-ren, CHEN Xin-ying, TANG Xiao-song. Research on composite support pattern of soil nails and prestressed anchors in deep foundation pits[J]. , 2009, 30(12): 3793 -3796 .
[3] LIANG Gui-lan, XU Wei-ya, TAN Xiao-long. Application of extension theory based on entropy weight to rock quality evaluation[J]. , 2010, 31(2): 535 -540 .
[4] LI Rong-tao. A coupled chemoplastic-damage constitutive model for plain concrete subjected to high temperature[J]. , 2010, 31(5): 1585 -1591 .
[5] MA Wen-tao. Forecasting slope displacements based on grey least square support vector machines[J]. , 2010, 31(5): 1670 -1674 .
[6] YU Lin-lin,XU Xue-yan,QIU Ming-guo, LI Peng-fei,YAN Zi-li. Influnce of freeze-thaw on shear strength properties of saturated silty clay[J]. , 2010, 31(8): 2448 -2452 .
[7] WANG Xie-qun,ZHANG You-xiang,ZOU Wei-lie,XIONG Hai-fan. Numerical simulation for unsaturated road-embankment deformation and slope stability under rainfall infiltration[J]. , 2010, 31(11): 3640 -3644 .
[8] WANG Wei, LIU Bi-deng, ZHOU Zheng-hua, WANG Yu-shi, ZHAO Ji-sheng. Equivalent linear method considering frequency dependent stiffness and damping[J]. , 2010, 31(12): 3928 -3933 .
[9] WANG Hai-bo,XU Ming,SONG Er-xiang. A small strain constitutive model based on hardening soil model[J]. , 2011, 32(1): 39 -43 .
[10] CAO Guang-xu, SONG Er-xiang, XU Ming. Simplified calculation methods of post-construction settlement of high-fill foundation in mountain airport[J]. , 2011, 32(S1): 1 -5 .