›› 2012, Vol. 33 ›› Issue (6): 1631-1639.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of dynamic properties of compacted clay under different compaction degrees and water contents

LIU Jun-xin1, 2,CHEN Zhong-fu2,XU Wei-fang2,CHEN Gang2   

  1. 1. School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China) 2. Institute of Structural Engineering, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
  • Received:2011-11-04 Online:2012-06-11 Published:2012-06-14

Abstract: In order to investigate compression mechanical properties with strain rates varying from 600 s-1 to 2 500 s-1 on compacted clays under different compaction degrees and water contents,the specimens are subjected to axial impact with different projectile speeds by using the split Hopkinson pressure bar(SHPB) of 25 mm in diameter made by polycarbonate and a small pellet of vacuum seal cement as pulse shaper; and the validity of experiment is discussed considering the stress equilibrium and constant strain rate. The related curves of stress and strain, the relationship between dynamic stress and strain at peak with strain rates, the relationship between dynamic stress increase factor and strain increase factor at peak with strain rates, and what’more, the relationship between specific energy absorption and strain rates are also analyzed. Experimental results show that the dynamic peak stress, peak strain and specific energy absorption increase with the increase of strain rate; but the compaction degrees and the water contents have no influence on them; compaction degrees and water contents have a greater influence on dynamic stress increase factor and strain increase factor at peak; specific energy absorptions are dependent on strain rates; and the strain rate effect can be expressed by exponential approximations.

Key words: compaction degree, water content, dynamics, strain rate, specific energy absorptions

CLC Number: 

  • TU 45
[1] KE Jin-fu, WANG Shui-lin, ZHENG Hong, YANG Yong-tao, . Application and promotion of a modified symmetric and anti-symmetric decomposition-based three-dimensional numerical manifold method [J]. Rock and Soil Mechanics, 2020, 41(2): 695-706.
[2] ZHAO Guo-yan, LI Zhen-yang, WU Hao, WANG En-jie, LIU Lei-lei. Dynamic failure characteristics of sandstone with non-penetrating cracks [J]. Rock and Soil Mechanics, 2019, 40(S1): 73-81.
[3] ZHENG Yao-lin, ZHANG Rong-jun, ZHENG Jun-jie, DONG Chao-qiang, LU Zhan, . Experimental study of flocculation-solidification combined treatment of hydraulically dredged mud at extra high-water content [J]. Rock and Soil Mechanics, 2019, 40(8): 3107-3114.
[4] WANG Zhen, ZHU Zhen-de, CHEN Hui-guan, ZHU Shu, . A thermo-hydro-mechanical coupled constitutive model for rocks under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(7): 2608-2616.
[5] YAN Ya-jing, YAN Yong-shuai, ZHAO Gui-zhang, ZHANG Tai-li, SUN Qiang, . Study on moisture migration in natural slope using high-density electrical resistivity tomography method [J]. Rock and Soil Mechanics, 2019, 40(7): 2807-2814.
[6] ZHANG Yu-bin, HUANG Dan. State-based peridynamic study on the hydraulic fracture of shale [J]. Rock and Soil Mechanics, 2019, 40(7): 2873-2881.
[7] WANG Peng-fei, TAN Wen-hui, MA Xue-wen, LI Zi-jian, LIU Jing-jun, WU Yang-fan, . Relationship between strength parameter and water content of fault gouge with different degrees of consolidation [J]. Rock and Soil Mechanics, 2019, 40(5): 1657-1662.
[8] WANG Juan-juan, HAO Yan-zhou, WANG Tie-hang. Experimental study of structural characteristics of unsaturated compacted loess [J]. Rock and Soil Mechanics, 2019, 40(4): 1351-1357.
[9] JIN Xiao, YANG Wen, MENG Xian-Hong, LEI Le-Le, . Deduction and application of unfrozen water content in soil based on electrical double-layer theory [J]. Rock and Soil Mechanics, 2019, 40(4): 1449-1456.
[10] WANG Teng, WU Rui. Study of vertical penetration resistance of seabed pipelines in cohesive soil [J]. Rock and Soil Mechanics, 2019, 40(3): 871-878.
[11] GAO Feng, XIONG Xin, ZHOU Ke-ping, LI Jie-lin, SHI Wen-chao, . Strength deterioration model of saturated sandstone under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(3): 926-932.
[12] MA Lin-jian, LI Zeng, LUO Zong-mu, WEI Hou-zhen, DUAN Li-qun, . Experimental study of strain rate effects on mechanical properties of coral particles [J]. Rock and Soil Mechanics, 2019, 40(12): 4637-4643.
[13] LI Zheng, GUO De-ping, ZHOU Xiao-ping, WANG Yun-teng, . Numerical simulation of crack propagation and coalescence using peridynamics [J]. Rock and Soil Mechanics, 2019, 40(12): 4711-4721.
[14] HUANG Jue-hao, CHEN Jian, KONG Ling-zhi, LIU Fu-sheng, KE Wen-hui, QIU Yue-feng, , LI Jian-bin, . Experimental study of dynamic behaviors of saturated soft clay considering coupling effects of cyclic confining pressure and vibration frequency [J]. Rock and Soil Mechanics, 2019, 40(1): 173-182.
[15] MENG Qing-shan, FAN Chao, ZENG Wei-xing, YU Ke-fu, . Tests on dynamic properties of coral-reef limestone in South China Sea [J]. Rock and Soil Mechanics, 2019, 40(1): 183-190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Fa-guo, CHEN Wen-wu, HAN Wen-feng, ZHANG Jing-ke. Correlation of microstructure indices and performance of sand solidified with polymer material SH[J]. , 2009, 30(12): 3803 -3807 .
[2] ZHUANG Ning, ZHU Ku-zhu, LI Jun-wei. Research on partial pressure joint arch tunnel’s dynamic simulation and optimum analysis of construction process[J]. , 2009, 30(9): 2875 -2880 .
[3] SHANG Shou-ping, SUI Xiao-xi, ZHOU Zhi-jin, LIU Fang-cheng, XIONG Wei. Study of dynamic shear modulus of granulated rubber-sand mixture[J]. , 2010, 31(2): 377 -381 .
[4] TIAN Qi-qiang,HOU Xing-min,WANG Zi-fa. A new method of subsoil damping ratio identification based on free vibration of a massive concrete foundation[J]. , 2011, 32(1): 211 -216 .
[5] YANG You-zhen, GE Xiu-run, HUANG Ming. Hamilton system and symplectic algorithm for space foundation[J]. , 2009, 30(2): 536 -541 .
[6] SU Guo-shao, ZHANG Ke-shi, Lü Hai-bo. A cooperative optimization method based on particle swarm optimization and Gaussian process for displacement back analysis[J]. , 2011, 32(2): 510 -515 .
[7] GAO Wen-hua, ZHU Jian-qun, ZHANG Zhi-min, HUANG Zi-yong. Numerical simulation of ultimate bearing capacity of soft rock foundation based on Hoek-Brown nonlinear failure criterion[J]. , 2011, 32(2): 593 -598 .
[8] LENG Yi,LUAN Mao-tian,XU Cheng-shun,MA Tai-lei. Experimental research on behaviors of saturated sand subject to drained shear strength under complex stress conditions[J]. , 2009, 30(6): 1620 -1626 .
[9] SHI Xiang-chao, MENG Ying-feng, LI Gao. Comparative analyses of several rock strength criteria[J]. , 2011, 32(S1): 209 -216 .
[10] DING Xuan-ming, LIU Han-long. Comparative analysis of dynamic responses of cast-in-place concrete large-diameter pipe pile and solid pile in homogeneous soil[J]. , 2011, 32(S1): 260 -264 .