›› 2012, Vol. 33 ›› Issue (9): 2837-2844.

• Numerical Analysis • Previous Articles     Next Articles

Behaviors of existing salt cavern group used for underground energy storage

JI Wen-dong, YANG Chun-he, YAO Yuan-feng, SHI Xi-lin   

  1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2011-04-25 Online:2012-09-11 Published:2012-09-12

Abstract: Due to the situation that intensive cavern group system has to be used to improve resources (oil & gas) storage efficiency in China, the stability and contraction distortion of the existing salt rock storage group model are discussed. The single cavity model and cavern group model are built according to the result of sonar cavity survey, and the influence laws that how cavern group operating model effects the cavern stability are proposed through the comparison and analysis of the simulation results. The laws show that asymmetric volume shrinkage and irregular deformation can be induced by the following three factors, the difference in position and depth, formation dip of interbedded and shape difference between adjacent cavern; different from which the maximum displacement zone usually appeared in a fixed position near the waist in single cavern model; there are no fixed position of maximum displacement because of the influence of nearby caverns in the cavern group model; with the properties of high stiffness, low creep resistance and the strong shear strength near the salt-mudstone interface, the mudstone can improve storage cavern integrity and stability when it penetrates the whole cavern group; considering that the stratigraphic dip interlayer deformation property has bad influence on the cavern group leakproofness, the stretching at the mudstone-salt interface and the torsional bending of mudstone can cause cracking in the mudstone layer: and the breakthrough crack could make single cavern lose the ability to operate alone and then affect the whole operating efficiency of the cavern group.

Key words: salt rock, storage group, creep deformation, volume shrinkage, interbed

CLC Number: 

  • TU 457
[1] DING Yan-hui, ZHANG Bing-yin, QIAN Xiao-xiang, YIN Yin, SUN Xun, . Experimental study of the characteristics of wetting deformation of rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(8): 2975-2981.
[2] JIANG De-yi, LI Xiao-kang, CHEN Jie, LI Xiao-jun, LIU Wei, KANG Yan-fei, . Model test and numerical calculation of double-well flow field in layered salt rock [J]. Rock and Soil Mechanics, 2019, 40(1): 165-172.
[3] ZENG Yin, LIU Jian-feng, ZHOU Zhi-wei, WU Chi, LI Zhi-cheng, . Creep acoustic emission and damage evolution of salt rock under uniaxial compression [J]. Rock and Soil Mechanics, 2019, 40(1): 207-215.
[4] CHEN Feng, ZHANG Qing-qing, YAO Wei, YE Liang-liang, . Dilation behavior and dilation angle model of salt rock with mudstone [J]. Rock and Soil Mechanics, 2018, 39(S2): 195-201.
[5] XIANG Gao, LIU Jian-feng, LI Tian-yi, XU-YANG Meng-di, DENG Chao-fu, WU Chi,. Study of fractal and damage characteristic in the deformation and failure process of salt rack based on acoustic emission [J]. , 2018, 39(8): 2905-2912.
[6] HU Wei-zhe, XIE Ling-zhi, CEN Wang-lai, YING Shi, LUO Yun-chuan, ZHAO Peng,. Mechanical characteristics of salt rock based on mesoscopic tests and discrete element method [J]. , 2018, 39(6): 2073-2081.
[7] ZHOU Yong, WANG Xu-ri, ZHU Yan-peng, LI Jing-bang, JIANG Xiao-kui,. Monitoring and numerical simulation of an interbedding high slope composed of soft and hard strong-weathered rock [J]. , 2018, 39(6): 2249-2258.
[8] MA Xu-qiang, SHI Xi-lin, YIN Hong-wu, YANG Chun-he, LI Yin-ping, MA Hong-ling,. Failure mechanisms of salt rock with an interlayer under triaxial compression [J]. , 2018, 39(2): 644-650.
[9] XU Yang-meng-di, LIU Jian-feng, XU Hui-ning, ZOU Hang, HU Chang-sheng, LI Jia-wei,. Experimental study of permeability of salt rock with impurities in whole process of loading [J]. , 2017, 38(S1): 402-408.
[10] ZHANG Qiang-yong, ZHANG Long-yun, XIANG Wen, JIANG Li-yu, DING Yan-zhi1,. Triaxial creep test of gneissic granite considering thermal effect [J]. , 2017, 38(9): 2507-2514.
[11] LI Yin-ping , KONG Qing-cong ,SHI Xi-lin, LI Shuo, YANG Bo-jin, YANG Chun-he,. Viscoelastic model of surface subsidence of salt cavern storage and its application [J]. , 2017, 38(7): 2049-2058.
[12] LIU Quan-sheng, LIU Qi, LIU Xue-wei, SUN Lei, ZHANG Xiao-bo, JI Jie,. Experimental study on penetration failure of soft-hard interbedded rock mass under a wedge indenter [J]. , 2017, 38(7): 1849-1855.
[13] JIANG De-yi, CUI Yao, FAN Jin-yang, CHEN Jie, REN Song,. Experimental study of mechanical characteristics of salt rock under discontinuous cyclic loading [J]. , 2017, 38(5): 1327-1334.
[14] ZHANG Jun-wei, JIANG De-yi, CHEN Jie, ZHAO Yun-feng, CHENG Yan-fei,. Effect of brine flux on damage and dissolving characteristics of rock salt under the condition of complex stress unloading [J]. , 2017, 38(3): 640-648.
[15] HAO Tie-sheng, GENG Yi-de, CHEN Yue-du,. Experimental investigation on mechanical behaviours of salt rock containing brittle-hard interlayers [J]. , 2017, 38(11): 3119-3126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .
[2] HUANG Qiang-bing,PENG Jian-bing,DENG Ya-hong,FAN Wen. Design parameters of Xi’an metro line 2 tunnel passing through active ground fissure zones[J]. , 2010, 31(9): 2882 -2888 .
[3] LIANG Jian-wei, FANG Ying-guang, GU Ren-guo. Analysis of microelectric field effect of seepage in tiny-particle clay[J]. , 2010, 31(10): 3043 -3050 .
[4] WANG Yi-zhong,LI Yong-quan,FU Xu-dong. Finite element calculation of NATM construction of Qiushui mountain tunnel beneath Jihe expressway[J]. , 2011, 32(1): 125 -131 .
[5] LI Xiu-zhen,WANG Cheng-hua,DENG Hong-yan. A comparison of distance and Fisher discrimination methods applied to identifying potential landslides[J]. , 2011, 32(1): 186 -192 .
[6] KONG Xiang-xing, XIA Cai-chu, QIU Yu-liang, ZHANG Li-ying, GONG Jian-wu. Study of construction mechanical behavior of parallel-small spacing metro tunnels excavated by shield method and cross diaphragm (CRD) method in loess region[J]. , 2011, 32(2): 516 -524 .
[7] JI Wu-jun. Investigation and analysis of engineering problems for loess tunnels[J]. , 2009, 30(S2): 387 -390 .
[8] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .
[9] MA Gang , CHANG Xiao-lin , ZHOU Wei , ZHOU Chuang-bing . Deep anti-sliding stability analysis of gravity dam based on Cosserat continuum theory[J]. , 2012, 33(5): 1505 -1512 .
[10] WANG Yu ,JIA Zhi-gang ,LI Xiao ,WANG Can ,YU Hong-ming . Fuzzy random reliability analysis of slope based on fuzzy point estimate method[J]. , 2012, 33(6): 1795 -1800 .