›› 2012, Vol. 33 ›› Issue (9): 2850-2856.

• Numerical Analysis • Previous Articles     Next Articles

Calculation of heap shape of landslide and its surge based on discrete element method

XU Yin1, 2, CHEN Sheng-hong1   

  1. 1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China; 2. School of Water Conservancy and Ecological Engineering, Nanchang Institute of Technology, Nanchang 330029, China
  • Online:2012-09-11 Published:2012-09-12

Abstract: Discrete element method (DEM) is adopted to simulate the whole failure process of reservoir bank slope. The flow chart of this paper is carried out and its corresponding software is developed. The basic principles of DEM are introduced. The disadvantages of the existing methods of calculating landslide velocity and advantages of DEM are analyzed. The height and shape of the surge of the reservoir stirred up by the landslide is simulated by combining the block information provided by DEM and wave equation, the heap shape of the landslide is also carried out by DEM. The feasibility and accuracy of the method is verified by case studies. The results of the examples indicate that the block velocity on the slope calculated by DEM agrees well with that the energy conservation method and Pan Jiazheng method; the DEM is more convenience and has a higher efficiency. The height of surge stirred up by multi-blocks is greater than that of single-block due to the plus of surges, which indicates that it is important to consider the plus of surges when analyzing the height of surge. The heap shape of the blocks provides basic data for the disaster assessment of landslide. The sliding of the block and the generating and transmitting of surge are also carried out by a self-developed DEM software, which provides a new idea for the study of the start, the process and the risk assessment of slope failure.

Key words: landslide hazard, surge, discrete element method, heap shape of landslide

CLC Number: 

  • TU 457
[1] KUANG Du-min, LONG Zhi-lin, ZHOU Yi-chun, YAN Chao-ping, CHEN Jia-min, . Prediction of rate-dependent behaviors of cemented geo-materials based on BP neural network [J]. Rock and Soil Mechanics, 2019, 40(S1): 390-399.
[2] WANG Yun-jia, SONG Er-xiang. Discrete element analysis of the particle shape effect on packing density and strength of rockfills [J]. Rock and Soil Mechanics, 2019, 40(6): 2416-2426.
[3] ZHAO Lan-hao, RUI Kai-tian, LIU Xun-nan. A fast linear contact detection algorithm for discrete particles of arbitrary sizes [J]. Rock and Soil Mechanics, 2019, 40(3): 1187-1196.
[4] ZHANG Cheng-gong, YIN Zhen-yu, WU Ze-xiang, JIN Yin-fu, . Three-dimensional discrete element simulation of influence of particle shape on granular column collapse [J]. Rock and Soil Mechanics, 2019, 40(3): 1197-1203.
[5] GU Xiao-qiang, YANG Shuo-cheng, . Numerical investigation on the elastic properties of granular soils by discrete element method [J]. Rock and Soil Mechanics, 2019, 40(2): 785-791.
[6] XIAO Si-you, SU Li-jun, JIANG Yuan-jun, LI Cheng, LIU Zhen-yu, . Influence of slope angle on mechanical properties of dry granular flow impacting vertical retaining wall [J]. Rock and Soil Mechanics, 2019, 40(11): 4341-4351.
[7] JING Lu, KWOK Chung-yee, ZHAO Tao, . Understanding dynamics of submarine landslide with coupled CFD-DEM [J]. Rock and Soil Mechanics, 2019, 40(1): 388-394.
[8] SHEN Hai-meng, LI Qi, LI Xia-ying, MA Jian-li, . Laboratory experiment and numerical simulation on brittle failure characteristics of Longmaxi formation shale in Southern Sichuan under different stress conditions [J]. Rock and Soil Mechanics, 2018, 39(S2): 254-262.
[9] ZHAO Ting-ting, FENG Yun-tian, WANG Ming, WANG Yong,. Modified Greenwood-Williamson model based stochastic discrete element method for contact with surface roughness [J]. , 2018, 39(9): 3440-3452.
[10] LIU Xun-nan, ZHAO Lan-hao, MAO Jia, XU Dong,. Discrete element method using three dimensional distance potential [J]. , 2018, 39(7): 2639-2650.
[11] ZHOU Xing-tao, SHENG Qian, CUI Zhen, LEN Xian-lun, FU Xiao-dong, MA Ya-li-na, . Dynamic artificial boundary setting methods for particle discrete element method [J]. , 2018, 39(7): 2671-2680.
[12] HU Wei-zhe, XIE Ling-zhi, CEN Wang-lai, YING Shi, LUO Yun-chuan, ZHAO Peng,. Mechanical characteristics of salt rock based on mesoscopic tests and discrete element method [J]. , 2018, 39(6): 2073-2081.
[13] LIU Yang, LI Shuang. Numerical simulation and analysis of meso-mechanical structure characteristic at critical state for granular media [J]. , 2018, 39(6): 2237-248.
[14] CUI Zhen, SHENG Qian, LENG Xian-lun, LUO Qing-zi,. Control effect of large geological discontinuity on seismic response and stability of underground rock caverns [J]. , 2018, 39(5): 1811-1824.
[15] ZHU De-fu, TU Shi-hao, YUAN Yong, MA Hang-sheng, LI Xiang-yang, . An approach to determine the compaction characteristics of fractured rock by 3D discrete element method [J]. , 2018, 39(3): 1047-1055.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Wen-jie,CHEN Yum-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. , 2010, 31(1): 211 -215 .
[2] GAO Guang-yun, ZHAO Yuan-yi, GAO Meng, YANG Cheng-bin. Improved calculation for lateral dynamic impedance of pile groups in layered soil[J]. , 2010, 31(2): 509 -515 .
[3] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[4] HU Yong-gang, LUO Qiang, ZHANG Liang, HUANG Jing, CHEN Ya-mei. Deformation characteristics analysis of slope soft soil foundation treatment with mixed-in-place pile by centrifugal model tests[J]. , 2010, 31(7): 2207 -2213 .
[5] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[6] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[7] WANG Wei-ming, SUN Rui, CAO Zhen-zhong, YUAN Xiao-ming. Comparative study of features of liquefied sites at home and abroad[J]. , 2010, 31(12): 3913 -3918 .
[8] XIONG Wei, ZHOU Zeng-hui, YU Kai-biao, WU Ya-ping, LUO Wei. Concrete ultrasonic tomography imaging and improvement based on curved path[J]. , 2011, 32(2): 629 -634 .
[9] WANG Guang-jin,YANG Chun-he ,ZHANG Chao,MA Hong-ling,KONG Xiang-yun ,HO. Research on particle size grading and slope stability analysis of super-high dumping site[J]. , 2011, 32(3): 905 -913 .
[10] HU Hai-jun, JIANG Ming-jing, ZHAO Tao, PENG Jian-bing, LI Hong. Effects of specimen-preparing methods on tensile strength of remolded loess[J]. , 2009, 30(S2): 196 -199 .