›› 2013, Vol. 34 ›› Issue (11): 3321-3328.

• Numerical Analysis • Previous Articles     Next Articles

Analysis of particle flow for impacts of granular parameters and porosity on silt’s properties under biaxial compression

XU Guo-jian1, 2,SHEN Yang1,LIU Han-long1   

  1. 1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China; 2. Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China
  • Received:2013-05-29 Online:2013-11-09 Published:2013-11-11

Abstract: To analyze the impact of geometrical particle parameters on macromechanical properties of the soil in particle flow method, the conversion formula of the granule number and modified porosity of numerical sample group in the 2D condition was proposed; and the numerical simulation and the laboratory model tests were carried out. It conducted 6 groups of parameter validation tests and 24 groups of variables cross-comparison biaxial compression tests, and included 4 types of gradations, 3 types of porosities and 2 kinds of contact models. The results show that the effect of porosity is larger than that of gradation on soil mechanical properties. With the increase of porosity, the peak value of soil strength gradually decreases; and the axial strains of corresponding points increase accordingly. Compared with the results of the Hertz-Mindlin (H-M) contact model which is focused on the nonlinear relation between the contact force and relative displacement; the results of the linear contact model are more reliable. Meanwhile the behavior of volumetric strain transited from dilatancy to negative dilatancy. And it is suggested when the porosity increases the H-M contact model reflected the subsequent dilatancy effect of soil after peak strength better.

Key words: particle flow, meso-structure parameter, gradation, 2D porosity, contact model, biaxial test

CLC Number: 

  • TU 43
[1] WU Er-lu, ZHU Jun-gao, GUO Wan-li, LU Yang-yang, . Experimental study of compaction characteristics of coarse-grained soil based on gradation equation [J]. Rock and Soil Mechanics, 2020, 41(1): 214-220.
[2] XIAO Yao, DENG Hua-feng, LI Jian-lin, ZHI Yong-yan, XIONG Yu. The deterioration effect of fractured rock mass strengthened by grouting method under long-term immersion [J]. Rock and Soil Mechanics, 2019, 40(S1): 143-151.
[3] DENG Hua-feng, ZHI Yong-yan, DUAN Ling-ling, PAN Deng, LI Jian-lin. Mechanical properties of sandstone and damage evolution of microstructure under water-rock interaction [J]. Rock and Soil Mechanics, 2019, 40(9): 3447-3456.
[4] LI Chen, WU Wen-bing, MEI Guo-xiong, ZONG Meng-fan, LIANG Rong-zhu, . Analytical solution for 1D degradation-consolidation of municipal solid waste under different drainage conditions [J]. Rock and Soil Mechanics, 2019, 40(8): 3071-3080.
[5] WEI Xing, ZHANG Zhao, WANG Gang, ZHANG Jian-min, . DEM study of mechanism of large post-liquefaction deformation of saturated sand [J]. Rock and Soil Mechanics, 2019, 40(4): 1596-1602.
[6] WU Shun-chuan, MA Jun, CHENG Ye, CHENG Zi-qiao, LI Jian-yu, . Review of the flattened Brazilian test and research on the three dimensional crack initiation point [J]. Rock and Soil Mechanics, 2019, 40(4): 1239-1247.
[7] GUO Wan-li, ZHU Jun-gao, QIAN Bin, ZHANG Dan, . Particle breakage evolution model of coarse-grained soil and its experimental verification [J]. Rock and Soil Mechanics, 2019, 40(3): 1023-1029.
[8] YU Jin, ZHANG Xin, CAI Yan-yan, LIU Shi-yu, TU Bing-xiong, FU Guo-feng, . Meso-damage and mechanical properties degradation of sandstone under combined effect of water chemical corrosion and freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(2): 455-464.
[9] SHEN Yang, SHEN Xue, YU Yan-ming, LIU Han-lon, GE Hua-yang, RUI Xiao-xi, . Macro-micro study of compressive deformation properties of calcareous sand with different particle fraction contents [J]. Rock and Soil Mechanics, 2019, 40(10): 3733-3740.
[10] WANG Jun, SHI Jing, LIU Fei-yu, CAI Yuan-qiang, . Effect of particle gradation on static and dynamic direct shear properties of geogrid-sand interface [J]. Rock and Soil Mechanics, 2019, 40(1): 109-117.
[11] LIU Yi-fei, ZHENG Dong-sheng, YANG Bing, ZHU Bing, SUN Ming-xiang. Microscopic simulation of influence of particle size and gradation on permeability coefficient of soil [J]. Rock and Soil Mechanics, 2019, 40(1): 403-412.
[12] WANG Gui-lin, LIANG Zai-yong, ZHANG Liang, SUN Fan, . Study of influence mechanism of Z-type fissure on sandstone strength and fracture behavior [J]. Rock and Soil Mechanics, 2018, 39(S2): 389-397.
[13] LI Yang, SHE Cheng-xue, ZHU Huan-chun, . Simulation and verification of particle flow of vibration rolling compaction of field rockfill [J]. Rock and Soil Mechanics, 2018, 39(S2): 432-442.
[14] WU Tian-hua, ZHOU Yu, WANG Li, SUN Jin-hai, ZHAO Huan, SUN Zheng, . Mesoscopic study of interaction mechanism between circular hole and fissures in rock under uniaxial compression [J]. Rock and Soil Mechanics, 2018, 39(S2): 463-472.
[15] CHEN Jia-rui, DONG Yun, ZHANG Yuan, JIANG Yang, ZHANG Ji-hua, HE Chun-lin, LI Xi-meng,. Study of characteristics of collapsing-sand considering angle and fracture opening in thin bedrocks [J]. , 2018, 39(S1): 244-250.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YIN Jie,GAO Yu-feng,HONG Zhen-shun. Research on undrained shear strength tests of soft Lianyungang clay[J]. , 2009, 30(11): 3297 -3301 .
[2] CHEN Shao-jie, GUO Wei-jia, YANG Yong-jie. Experimental study of creep model and failure characteristics of coal[J]. , 2009, 30(9): 2595 -2598 .
[3] LIN Gang,XU Chang-jie,CAI Yuan-qiang. Research on characters of retaining structures for deep foundation pit excavation under unbalanced heaped load[J]. , 2010, 31(8): 2592 -2598 .
[4] MU Yan-hu,MA Wei,SUN Zhi-zhong,LIU Yong-zhi. Comparative analysis of cooling effect of crushed rock embankment along the Qinghai-Tibet Railway[J]. , 2010, 31(S1): 284 -292 .
[5] ZHAO Lian-heng,LUO Qiang,LI Liang,YANG Feng,DAN Han-cheng. Upper bound quasi-static analysis of dynamic stability of layered rock slopes[J]. , 2010, 31(11): 3627 -3634 .
[6] LIU Xiao-li, ZHANG Dan-dan, LIU Kai, SU Yuan-yuan. Design and application of a kind of direct shear model test apparatus[J]. , 2010, 31(S2): 475 -480 .
[7] KANG Yong-jun,YANG Jun,SONG Er-xiang. Calculation method and parameter research for time-history of factor of safety of slopes subjected to seismic load[J]. , 2011, 32(1): 261 -268 .
[8] LU Kun-lin, YANG Yang. Approximate calculation method of active earth pressure considering displacement[J]. , 2009, 30(2): 553 -557 .
[9] LI Rong-jian,YU Yu-zhen,Lü He,LI Guang-xin. Dynamic centrifuge modeling of piles-reinforced slope on saturated sandy foundation[J]. , 2009, 30(4): 897 -902 .
[10] SU Li-jun, LIAO Hong-jian, YIN Jian-hua. Investigation on stress variation in soil surrounding a soil nail during installation and pull-out[J]. , 2011, 32(S1): 124 -128 .