›› 2013, Vol. 34 ›› Issue (3): 631-638.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Effect of varying void on consolidation of dredger fill under vacuum preloading

QIU Chang-lin,YAN Shu-wang,SUN Li-qiang,JI Yu-cheng   

  1. School of Civil Engineering, Tianjin University, Tianjin 300072, China
  • Received:2012-01-17 Online:2013-03-11 Published:2013-03-20

Abstract: Dredger fill changes from fluid to soil and its void reduces markedly during the consolidation of reclaimed ground under vacuum loading. Because both permeability and compressibility are functions of void ratio, the consolidation coefficient of dredger fill changes greatly. The prediction by current design method is much different from engineering practice because the consolidation coefficient in this method is taken as a constant. In order to account for the effect of varying void on consolidation, the relation between consolidation coefficient and effective stress is derived; and a consolidation model for dredger fill is built by applying this relation to Barron’s consolidation theory. The model is proved by comparing the result of this model with that of model test. The analysis result shows that the consolidation coefficient of dredger fill decreases with the void during the consolidation. Therefore, the consolidation of reclaimed ground is rapid in the initial stage and slow later. The quick decrease of the permeability of soil near the drainage board area will hinder the consolidation of soils in the farther area. Therefore, compared with the result of current design model, the consolidation of reclaimed ground is slower in the later stage and the whole period of consolidation is longer.

Key words: dredger fill, vacuum preloading, varying void, consolidation

CLC Number: 

  • TU 472
[1] CHENG Tao, YAN Ke-qin, HU Ren-jie, ZHENG Jun-jie, ZHANG Huan, CHEN He-long, JIANG Zhi-jie, LIU Qiang, . Analytical method for quasi-two-dimensional plane strain consolidation problem of unsaturated soil [J]. Rock and Soil Mechanics, 2020, 41(2): 453-460.
[2] MENG Yu-han, ZHANG Bi-sheng, CHEN Zheng, MEI Guo-xiong, . Consolidation analysis of foundation with sand blankets under ramp loading [J]. Rock and Soil Mechanics, 2020, 41(2): 461-468.
[3] TU Yuan, WANG Kui-hua, ZHOU Jian, HU An-feng, . Application of effective stress method and effective consolidation stress method for strength calculation in preloading ground [J]. Rock and Soil Mechanics, 2020, 41(2): 645-654.
[4] LIU Zhong-yu, XIA Yang-yang, ZHANG Jia-chao, ZHU Xin-mu. One-dimensional elastic visco-plastic consolidation analysis of saturated clay considering Hansbo’s flow [J]. Rock and Soil Mechanics, 2020, 41(1): 11-22.
[5] SHI Li, HU Dong-dong, CAI Yuan-qiang, PAN Xiao-dong, SUN Hong-lei, . Preliminary study of real-time pore water pressure response and reinforcement mechanism of air-booster vacuum preloading treated dredged slurry [J]. Rock and Soil Mechanics, 2020, 41(1): 185-193.
[6] LEI Hua-yang, HU Yao, LEI Shuang-hua, QI Zi-yang, XU Ying-gang, . Analysis of microstructure characteristics of air-booster vacuum preloading for ultra-soft dredger fills [J]. Rock and Soil Mechanics, 2019, 40(S1): 32-40.
[7] ZHANG Lei, WANG Ning-wei, JING Li-ping, FANG Chen, DONG Rui, . Comparative experiments of different electrode materials on electro-osmotic consolidation [J]. Rock and Soil Mechanics, 2019, 40(9): 3493-3501.
[8] ZHANG Yu-guo, WAN Dong-yang, ZHENG Yan-lin, HAN Shuai, YANG Han-yue, DUAN Meng-meng. Analytical solution for consolidation of vertical drain under vacuum preloading considering the variation of radial permeability coefficient [J]. Rock and Soil Mechanics, 2019, 40(9): 3533-3541.
[9] QIU Jin-wei, PU He-fu, CHEN Xun-long, LÜ Wei-dong, LI Lei. Coupled analysis of self-weight consolidation and contaminant transport in confined disposal of contaminated sediments [J]. Rock and Soil Mechanics, 2019, 40(8): 3090-3098.
[10] ZHANG Zhi-guo, HUANG Mao-song, YANG Xuan, . Analytical solution for dissipation of excess pore water pressure and soil consolidation settlement induced by tunneling under the influence of long-term leakage [J]. Rock and Soil Mechanics, 2019, 40(8): 3135-3144.
[11] LI Chen, WU Wen-bing, MEI Guo-xiong, ZONG Meng-fan, LIANG Rong-zhu, . Analytical solution for 1D degradation-consolidation of municipal solid waste under different drainage conditions [J]. Rock and Soil Mechanics, 2019, 40(8): 3071-3080.
[12] YANG De-huan, YAN Rong-tao, WEI Chang-fu, PAN Xue-ying, ZHANG Qin, . A method for determining average intergranular stresses in saturated clays [J]. Rock and Soil Mechanics, 2019, 40(6): 2075-2084.
[13] GONG Wen-hui, ZHAO Xu-dong, QIU Jin-wei, LI Yi, YANG Han. Nonlinear analysis of one-dimensional consolidation of saturated clay including dead-weight effects and large strain [J]. Rock and Soil Mechanics, 2019, 40(6): 2099-2107.
[14] JIA Rui, LEI Hua-yang, . Experimental study of anisotropic consolidation behavior of Ariake clay [J]. Rock and Soil Mechanics, 2019, 40(6): 2231-2238.
[15] LUO Qing-zi, CHEN Xiao-ping, YUAN Bing-xiang, FENG De-luan, . Deformation behavior and consolidation model of soft soil under flexible lateral constraint [J]. Rock and Soil Mechanics, 2019, 40(6): 2264-2274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEN Shi-qiang, CHEN Yu-min, DING Xuan-ming, ZUO Wei-long. Application of grouted gravel pile in soft subgrade improvement of expressway[J]. , 2010, 31(5): 1559 -1563 .
[2] ZHANG Chang-guang,ZHANG Qing-he,ZHAO Jun-hai. Unified solutions of shear strength and earth pressure for unsaturated soils[J]. , 2010, 31(6): 1871 -1876 .
[3] HAO Dong-xue, CHEN Rong, LUAN Mao-tian, WU Ke. Numerical analysis of SBPT for estimation of undrained shear strength[J]. , 2010, 31(7): 2324 -2328 .
[4] WANG Wei LI Xiao-chun LI Qiang SHI Lu WANG Ying BAI Bing. Small size in-situ transient pulse permeability measurement system and its experimental research[J]. , 2011, 32(10): 3185 -3189 .
[5] FAN Shu-li ,CHEN Jian-yun ,ZHANG Jun-qing. Research on bearing capacity of inclined uplift pile under wave cyclic loading[J]. , 2012, 33(1): 301 -306 .
[6] LI Shu-cai , ZHAO Yan , XU Bang-shu , LI Li-ping , LIU Qin , WANG Yu-kui . Study of determining permeability coefficient in water inrush numerical calculation of subsea tunnel[J]. , 2012, 33(5): 1497 -1504 .
[7] WANG Hong-xin , SUN Yu-yong . Test study and bar system FEM for foundation pits considering excavation width[J]. , 2012, 33(9): 2781 -2787 .
[8] LIU Fei-yu , YU Wei , CAI Yuan-qiang , ZHANG Meng-xi . Model test and numerical analysis of geogrid-reinforced pile-supported foundation[J]. , 2012, 33(S1): 244 -250 .
[9] ZHANG Le-wen, ZHANG De-yong, LI Shu-cai, QIU Dao-hong. Application of RBF neural network to rockburst prediction based on rough set theory[J]. , 2012, 33(S1): 270 -276 .
[10] CHEN Zhi-jian ,CHEN Xin-di ,TANG Yong ,ZHANG Ning-ning . Sensor protection techniques of super-large deep-water pile group foundation[J]. , 2012, 33(11): 3509 -3515 .