›› 2013, Vol. 34 ›› Issue (5): 1287-1292.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Preliminary study of microstructural properties and chemical modifications of interlayer shear weakness zone in Baihetan

SHI Cun-peng,FENG Xia-ting,JIANG Quan,XU Ding-ping   

  1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2012-02-28 Online:2013-05-10 Published:2013-05-14

Abstract: Interlayer shear weakness zone has a series of features such as loose structure, easy to be softening, large spatial distribution and poor mechanical properties in Baihetan hydropower station. The existence of interlayer shear weakness zone seriously affects the stability of underground cavern groups of hydropower station. In order to reveal and improve the mechanical properties of interlayer shear weakness zone, X-ray diffractometer, scanning electron microscope and mercury intrusion porosimetry tests are applied separately to observe and determine the main mineral composition, the orientated range of particles and the distribution of pore structure in samples. Microstructural properties of interlayer shear weakness zone and its effect on the selection of grouting materials are discussed in detail combining with the testing data. What’s more, chemical modification experiments are carried out based on above experiments. Comparative experiment between samples immersed with or without sodium silicate solution indicates that chemical modification can improve the integrality, elastic wave velocity, compressive strength, elastic modulus and cohesion of interlayer shear weakness zone effectively. These cognitions can provide some useful means for the engineering reinforcement and modification design of interlayer shear weakness zones in Baihetan hydropower station.

Key words: interlayer shear weakness zone, microstructural properties, chemical modification

CLC Number: 

  • TU 45
[1] ZHAO Gao-wen ,FAN Heng-hui ,CHEN Hua ,LU Li-na ,SHI Mei, . Study of chemical modification of dispersive clay based on mechanism of dispersivity of cohesive soil [J]. , 2013, 34(S2): 210-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[2] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[3] YAO Yang-ping,FENG Xing,HUANG Xiang,LI Chun-liang. Application of UH model to finite element analysis[J]. , 2010, 31(1): 237 -245 .
[4] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[5] GAO Yang, ZHANG Qing-song, XU Bang-shu, LI Wei. Study of mining roof abutment pressure distribution law and affecting factors under sea[J]. , 2010, 31(4): 1309 -1313 .
[6] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[7] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[8] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .
[9] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[10] ZHOU Yang, ZHOU Guo-qing. Semi-analytical solution for temperature field of one-dimensional soil freezing problem[J]. , 2011, 32(S1): 309 -0313 .