›› 2013, Vol. 34 ›› Issue (S1): 14-21.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Research on skin friction distribution model of Y-shaped vibro-pile under soil-compacting effect

WEI Xin-jiang1,2, LIU An-yuan1, WANG Xin-quan2   

  1. 1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; 2. Department of Civil Engineering, City College of Zhejiang University, Hangzhou 310015, China
  • Received:2012-08-31 Online:2013-08-30 Published:2014-06-09

Abstract: Y-shaped vibro-pile is a new type of pile, compared with the traditional circular pile, the Y-shaped cross-section pile increases the contact area of the pile and soil, and thus increase skin friction and the bearing capacity. Due to the particularity of the pile cross-section, when Y-shaped pile is driven by pipe with vibration, different area of Y-shaped section have varying degrees of compression on the soil and its skin friction distribution trait is complicated than circular pile. Simplifying Y-shaped pile skin friction as rectangularly distributed along the pile length direction and uniformly distributed along the section perimeter direction does not match with the actual and the engineering experience also shows its inappropriate. Firstly, combining the cavity expansion theory and the analytical equations of Y-shaped section to deduce the nonuniform distribution, it is shown that the maximum skin friction is 1.24-1.75 times larger than the minimum skin friction at the same cross-section; the influences of three variables R, θ, L of Y-shaped pile on skin friction are also analysed. The total skin friction can be calculated by quadraturing the skin friction along nine integral regions of the Y-shaped section and the pile length direction,combined with the tip resistance,the ultimate bearing capability is obtained and consistent with the data of static loading test.

Key words: Y-shaped vibro-pile, skin friction, cavity expansion theory, nonuniform distribution model

CLC Number: 

  • TU 473
[1] WU Shuang-shuang, HU Xin-li, ZHANG Han, ZHOU Chang, GONG Hui, . Field test and calculation method of negative skin friction of rock-socketed piles [J]. Rock and Soil Mechanics, 2019, 40(9): 3610-3617.
[2] WANG Yong-hong, ZHANG Ming-yi, BAI Xiao-yu, LIU Jun-wei, . Study of penetration characteristics and influence factor of jacked pile based on fiber bragg grating sensing technology [J]. Rock and Soil Mechanics, 2019, 40(12): 4801-4812.
[3] MO Pin-qiang, GAO Xin-wei, HUANG Zi-feng, MA Dan-yang, . Analytical method for settlement control of displacement pile induced by undercrossing tunnel excavation [J]. Rock and Soil Mechanics, 2019, 40(10): 3823-3832.
[4] MA Xue-ning, FU Jiang, WANG Jun, WANG Xu,. Effect of different surcharge loading forms on negative skin friction of pile groups [J]. , 2018, 39(10): 3531-3538.
[5] RUAN Yong-fen, WANG Xi-dong, LI Zhi-wei, LIU Ke-wen,. Theoretical analysis of spherical cavity expansion of axial loading capacity for toothed piles with sand liner [J]. , 2017, 38(9): 2567-2573.
[6] SHEN Cai-hua, WANG Yuan, LI He-wen, HU Yu-tian,. Determination of pile-soil stress ratio for compaction foundation using cavity expansion theory [J]. , 2017, 38(10): 2873-2880.
[7] ZHU Bing-er, QI Chang-guang, BAO Jiao-lei. Field test study of load transfer mechanism of plastic tube pile under embankment loading [J]. , 2016, 37(S2): 658-664.
[8] YAO Wen-juan, CAI Chen-yu. A new load transfer model of super-long pile [J]. , 2016, 37(S2): 783-787.
[9] ZOU Fei,LONG Wan-xue,LI Liang,. Theoretical analysis and numerical simulation of rock damage and failure under wedge cutting [J]. , 2016, 37(7): 2101-2108.
[10] CAO Wei-ping, LU Qing-yuan, FAN Wen-fu, LI Sheng. Experimental study of load transfer behavior of batter piles under vertical loads [J]. , 2016, 37(11): 3048-3056.
[11] HUANG Xue-feng , YANG Xiao-hui , YIN He , LIU Zi-long , ZHOU Jun-peng,. Study of relationship between maximum collapsing depth and neutral point position of pile foundation in collapsible loess ground [J]. , 2015, 36(S2): 296-302.
[12] KONG Gang-qiang , SUN Xue-jin , CAO Zhao-hu , ZHOU Yang , . Visualization comparative model tests on neutral point position of tapered pile and equal section pile [J]. , 2015, 36(S1): 38-42.
[13] GOU Yao-bo, YU Feng, YANG Yu. Locating neutral point of excavation-induced skin friction on existing piles [J]. , 2015, 36(9): 2681-2687.
[14] CAI Can ,WU Kai-song ,LIAN Dong ,YUAN Xiao-hong,. Study of rock-breaking mechanism under single-tooth impact [J]. , 2015, 36(6): 1659-1666.
[15] JIA Yu ,SONG Fu-gui ,WANG Bing-long ,YANG Long-cai,. Modified load transfer method for calculation of foundation pile settlement due to dewatering [J]. , 2015, 36(1): 68-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Wen-jie,CHEN Yum-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. , 2010, 31(1): 211 -215 .
[2] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[3] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[4] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[5] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[6] HU Yong-gang, LUO Qiang, ZHANG Liang, HUANG Jing, CHEN Ya-mei. Deformation characteristics analysis of slope soft soil foundation treatment with mixed-in-place pile by centrifugal model tests[J]. , 2010, 31(7): 2207 -2213 .
[7] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[8] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[9] YANG Zhao-liang, SUN Guan-hua, ZHENG Hong. Global method for stability analysis of slopes based on Pan’s maximum principle[J]. , 2011, 32(2): 559 -563 .
[10] WANG Guang-jin,YANG Chun-he ,ZHANG Chao,MA Hong-ling,KONG Xiang-yun ,HO. Research on particle size grading and slope stability analysis of super-high dumping site[J]. , 2011, 32(3): 905 -913 .