›› 2014, Vol. 35 ›› Issue (1): 167-174.

• Geotechnical Engineering • Previous Articles     Next Articles

Review of calculation methods of earth berm before retaining structure and a new simplified analytical method

YAN Jing1,FANG Xiao-min2   

  1. 1. Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200433, China; 2. Yiwu City Planning & Design Institute of Zhejiang, Yiwu, Zhejiang 322000, China
  • Received:2012-10-26 Online:2014-01-10 Published:2014-01-14

Abstract: Setting earth berm before retaining structure can reduce effectively its internal force, deformation and embedded depth, and achieve good economic and environmental benefits. Based on various technical codes for excavation engineering can’t provide the design and calculation of the earth berm, and very few research this problem and the point of view is not uniform in geotechnical engineering field, the past calculation methods of earth berm is collated and analyzed firstly, and four categories are induced: (1) adding load before the retaining structure; (2) subsidiary stress of Boussinesq approximation; (3) improved elastic foundation beam method; (4) whole finite element collaborative computing, then the doubts, key points and applicable conditions in these methods are pointed out; next the mechanism of earth berm is summarized. At last, based on elastic foundation beam theory, a new simplified method to analyze earth berm is proposed, which used pressure springs and overload to simulate the back pressure effect, and by comparative calculating of setting earth berm, not setting earth berm, reinforcing earth berm in an excavation engineering, the rationality of this method is verified; and it can provide reference for design and construction of retaining engineering.

Key words: retaining structure, earth berm, elastic foundation beam, foundation pit engineering, calculation method

CLC Number: 

  • TU 470
[1] ZHU Yan-peng, TAO Jun, YANG Xiao-hui, PENG Jun-guo, WU Qiang, . Design and numerical analyses of high-fill slope strengthened by frame with prestressed anchor-plates [J]. Rock and Soil Mechanics, 2020, 41(2): 612-623.
[2] DENG Tao, LIN Cong-yu, LIU Zhi-peng, HUANG Ming, CHEN Wen-jing, . A simplified elastoplastic method for laterally loaded single pile with large displacement [J]. Rock and Soil Mechanics, 2020, 41(1): 95-102.
[3] ZHANG Ding-wen, LIU Zhi-xiang, SHEN Guo-gen, E Jun-yu, . Measurement of earth pressure of shallow buried tunnel with super large diameter and applicability evaluation of calculation method [J]. Rock and Soil Mechanics, 2019, 40(S1): 91-98.
[4] WANG Qin-ke, MA Jian-lin, CHEN Wen-long, YANG Yan-xin, HU Zhong-bo, . Centrifugal model tests and calculation method of uplift bearing capacity of rock-socketed pedestal pile overburden soil [J]. Rock and Soil Mechanics, 2019, 40(9): 3405-3415.
[5] LI Rui-shan, YUAN Xiao-ming. Simplified calculation method for the fundamental period of layered soil sites [J]. Rock and Soil Mechanics, 2019, 40(8): 3227-3235.
[6] MA Wen-guan, LIU Run, LIAN Ji-jian, GUO Shao-zeng. The study of penetration resistance of bucket foundation in silt [J]. Rock and Soil Mechanics, 2019, 40(4): 1307-1312.
[7] WEI Jiu-chuan, HAN Cheng-hao, ZHANG Wei-jie, XIE Chao, ZHANG Lian-zhen, LI Xiao-peng, ZHANG Chun-rui, JIANG Ji-gang. Mechanism of fissure grouting based on step-wise calculation method [J]. Rock and Soil Mechanics, 2019, 40(3): 913-925.
[8] TANG De-qi, YU Feng, CHEN Yi-tian, LIU Nian-wu, . Model excavation tests on double layered retaining structure composed of existing and supplementary soldier piles [J]. Rock and Soil Mechanics, 2019, 40(3): 1039-1048.
[9] ZHOU Yong, LING Yong-qiang, YANG Xiao-hui, . Relationship between the displacement and stability of pile anchor retaining structure considering additional stress [J]. , 2018, 39(8): 2913-2921.
[10] LI Lian-xiang, FU Qing-hong, HUANG Jia-jia, . Centrifuge model tests on cantilever foundation pit engineering in sand ground and silty clay ground [J]. , 2018, 39(2): 529-536.
[11] ZHANG Zhi-guo, MA Bing-bing, HUANG Mao-song, XU Xiao-yang,. Influence analyses on force and deformation of existing tunnels induced by landslide in mountain region [J]. , 2018, 39(10): 3555-3564.
[12] JIN Ya-bing. A method for determination of reinforcement width and depth of trench face of diaphragm wall [J]. , 2017, 38(S2): 273-278.
[13] JIA Jin-qing, GAO Jun-cheng, TU Bing-xiong , ZHANG Lei, WANG Hai-tao, GAO Ren-zhe,. Centrifugal model test of flexible retaining structures with pressured prestressed anchor in deep excavation [J]. , 2017, 38(S2): 304-310.
[14] JIN Ya-bing. Study of stability calculation method of trench face reinforcement of diaphragm wall [J]. , 2017, 38(S1): 305-312.
[15] ZHANG Yong-jie, XIA Yi-qi, FENG Xia-ting, WANG Gui-yao,. A simplified method and affecting factors for double pile-column foundation in abrupt slope [J]. , 2017, 38(6): 1705-1715.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .
[2] LIANG Jian-wei, FANG Ying-guang, GU Ren-guo. Analysis of microelectric field effect of seepage in tiny-particle clay[J]. , 2010, 31(10): 3043 -3050 .
[3] LI Xiu-zhen,WANG Cheng-hua,DENG Hong-yan. A comparison of distance and Fisher discrimination methods applied to identifying potential landslides[J]. , 2011, 32(1): 186 -192 .
[4] JI Wu-jun. Investigation and analysis of engineering problems for loess tunnels[J]. , 2009, 30(S2): 387 -390 .
[5] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .
[6] CHEN Li-wen, SUN De-an. Bifurcation analysis of overconsolidated clays with soil-water coupling along different stress paths[J]. , 2011, 32(10): 2922 -2928 .
[7] ZHENG Gang ZHANG Li-ming DIAO Yu. Analysis of working performance of piles beneath excavation bottom and settlement calculation[J]. , 2011, 32(10): 3089 -3096 .
[8] ZHAO Ming-hua, LEI Yong, ZHANG Rui. Study of punching failure mode and safe thickness of pile foundation in karst region[J]. , 2012, 33(2): 524 -530 .
[9] WANG Song-he,QI Ji-lin. Experimental study of relaxation characteristics of warm permafrost[J]. , 2012, 33(6): 1660 -1666 .
[10] WANG Yu ,JIA Zhi-gang ,LI Xiao ,WANG Can ,YU Hong-ming . Fuzzy random reliability analysis of slope based on fuzzy point estimate method[J]. , 2012, 33(6): 1795 -1800 .