›› 2014, Vol. 35 ›› Issue (11): 3056-3064.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

A cyclic constitutive model of saturated dense sands considering fabric change effects

ZHAO Chun-lei1, ZHAO Cheng-gang1, ZHANG Wei-hua1, 2, CAI Guo-qing1   

  1. 1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China; 2. City Construction, Beijing City University, Beijing 100086, China
  • Received:2014-01-26 Online:2014-11-11 Published:2014-12-10

Abstract: To truly describe the reaction of saturated sands under cyclic loading, a parameter considering macroscopically dilatancy stage on fabric changes is necessary. Based on the existing constitutive model dependent on a state parameter, a fabric-dilatancy internal variable z considering the influence of the fabric change is introduced. It is still based on phase transformation state. With state parameter the deformation tendency of sand at any time or any conditions can be judged. Through the z effected on the dilatancy, plastic deformation accumulation is considered when load increment reversals. In this paper, an elastoplastic constitutive model of saturated dense sand under cyclic loading is established. According to experimental phenomenon analysis, plastic modulus in the existing model is modified, it can simulate well expansion shrinkage change process of sands under drained cyclic loading. Finally, in view of the dense sands during triaxial drained cyclic loading, a comparison between model simulations and a sequence of experimental results shows that the model can generally reflect the deformation behavior of being given sand.

Key words: saturated sands, cyclic loading, state parameter, dilatancy, phase transformation line, fabric-dilatancy internal variable

CLC Number: 

  • TU 443
[1] MA Wei-jia, CHEN Guo-xing, WU Qi, . Experimental study on liquefaction resistance of coral sand under complex loading conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 535-542.
[2] LI Xiao-xuan, LI Tao, PENG Li-yun, . Elastoplastic two-surface model for unsaturated cohesive soils under cyclic loading with controlled matric suction [J]. Rock and Soil Mechanics, 2020, 41(2): 552-560.
[3] TANG Xiao-wu, LIU Jiang-nan, YANG Xiao-qiu, YU Yue. Theoretical study of dynamic pore water pressure dissipation characteristics of open-hole pipe pile [J]. Rock and Soil Mechanics, 2019, 40(9): 3335-3343.
[4] LIU Si-hong, SHEN Chao-min, MAO Hang-yu, SUN Yi. State-dependent elastoplastic constitutive model for rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(8): 2891-2898.
[5] ZHANG Ling-kai, WANG Rui, ZHANG Jian-min, TANG Xin-jun, . A static and dynamic constitutive model of rockfill material considering particle breakage [J]. Rock and Soil Mechanics, 2019, 40(7): 2547-2554.
[6] LI Jian-peng, GAO Ling, MU Huan-sheng. Dilatancy characteristics of sandstone and its function of dilatancy angle under high confining pressure and unloading conditions [J]. Rock and Soil Mechanics, 2019, 40(6): 2119-2126.
[7] WANG Chen-lin, ZHANG Xiao-dong, DU Zhi-gang, . Experimental study of the permeability of coal specimen with pre-existing fissure under cyclic loading and unloading [J]. Rock and Soil Mechanics, 2019, 40(6): 2140-2153.
[8] HE Zi-lu, LIU Wei, HE Si-ming, YAN Shuai-xing, . Shear dilatancy mechanism and process simulation of rapid sliding of saturated loose deposits [J]. Rock and Soil Mechanics, 2019, 40(6): 2389-2396.
[9] WANG Feng-yun, QIAN De-ling, . Dilatancy analysis for a circular tunnel excavated in rock mass based on unified strength theory [J]. Rock and Soil Mechanics, 2019, 40(5): 1966-1976.
[10] XIA Tang-dai, ZHENG Qing-qing, CHEN Xiu-liang, . Predicting excess pore water pressure under cyclic loading with regular intervals based on cumulative dynamic deviator stress level [J]. Rock and Soil Mechanics, 2019, 40(4): 1483-1490.
[11] ZHOU Hui, CHENG Guang-tan, ZHU Yong, CHEN Jun, LU Jing-jing, CUI Guo-jian, YANG Pin-qing, . Experimental study of shear deformation characteristics of marble dentate joints [J]. Rock and Soil Mechanics, 2019, 40(3): 852-860.
[12] ZHANG Xun, HUANG Mao-song, HU Zhi-ping, . Model tests on cumulative deformation characteristics of a single pile subjected to lateral cyclic loading in sand [J]. Rock and Soil Mechanics, 2019, 40(3): 933-941.
[13] LU Yong, ZHOU Guo-qing , YANG Dong-ying, SONG Jia-qing, . Explicit calculation of sand unified model combining shear dilatancy softening and shear shrinkage hardening [J]. Rock and Soil Mechanics, 2019, 40(3): 978-986.
[14] DONG Jian-xun, LIU Hai-xiao, LI Zhou. A bounding surface plasticity model of sand for cyclic loading analysis [J]. Rock and Soil Mechanics, 2019, 40(2): 684-692.
[15] GUO Wan-li, CAI Zheng-yin, WU Ying-li, HUANG Ying-hao. Study on the particle breakage energy and dilatancy of coarse-grained soils [J]. Rock and Soil Mechanics, 2019, 40(12): 4703-4710.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Wen-jie,CHEN Yum-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. , 2010, 31(1): 211 -215 .
[2] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[3] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[4] LEI Ming-feng, PENG Li-min, SHI Cheng-hua, AN Yong-lin. Research on construction spatial effects in large-long-deep foundation pit[J]. , 2010, 31(5): 1579 -1584 .
[5] HU Yong-gang, LUO Qiang, ZHANG Liang, HUANG Jing, CHEN Ya-mei. Deformation characteristics analysis of slope soft soil foundation treatment with mixed-in-place pile by centrifugal model tests[J]. , 2010, 31(7): 2207 -2213 .
[6] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[7] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[8] WANG Wei-ming, SUN Rui, CAO Zhen-zhong, YUAN Xiao-ming. Comparative study of features of liquefied sites at home and abroad[J]. , 2010, 31(12): 3913 -3918 .
[9] YANG Zhao-liang, SUN Guan-hua, ZHENG Hong. Global method for stability analysis of slopes based on Pan’s maximum principle[J]. , 2011, 32(2): 559 -563 .
[10] HU Hai-jun, JIANG Ming-jing, ZHAO Tao, PENG Jian-bing, LI Hong. Effects of specimen-preparing methods on tensile strength of remolded loess[J]. , 2009, 30(S2): 196 -199 .