›› 2014, Vol. 35 ›› Issue (4): 1025-1032.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Analysis of toppling failure of rock slopes subjected to seismic loads

ZHENG Yun,CHEN Cong-xin,ZHU Xi-xi,OU Zhe,LIU Xiu-min,LIU Ting-ting   

  1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2013-08-01 Online:2014-04-10 Published:2014-04-18

Abstract: Toppling failure is one typical type of deformation failure modes of steep layered rock slopes. Analysis of toppling failure of rock slopes due to seismic loads possesses an important guiding significance for engineering design. Based on the limit equilibrium, a general analytical solution of block toppling failure due to earthquakes is presented for the condition that block slenderness is relatively large. In terms of cases with simple geometry, explicit expressions are given. The calculation formulas of the normal force between block interfaces, failure mode transition point and toe residual sliding force are obtained. The influence of seismic loads on the failure mode of counter-tilt rock slope, maximum allowable inclinations of the line normal to dip when toppling failure occurs, failure mode transition point and toe residual sliding force are studied through four typical examples. Those provide a theoretical foundation for the seismic support design of counter-tilt rock slopes. Finally, the comparative analysis of the analytical method and the transfer coefficient method is done according to the quantitative relationship between seismic influence coefficient, failure mode transition point and toe residual sliding force. The results show that the analytical method achieves sufficient accuracy when block slenderness is more than 20.

Key words: limit equilibrium, counter-tilt rock slope, toppling failure, seismic loads, residual sliding force

CLC Number: 

  • TU 457
[1] CHEN Jian-gong, LI Hui, HE Zi-yong, . Homogeneous soil slope stability analysis based on variational method [J]. Rock and Soil Mechanics, 2019, 40(8): 2931-2937.
[2] ZHANG Hai-na, CHEN Cong-xin, ZHENG Yun, SUN Chao-yi, ZHANG Ya-peng, LIU Xiu-min, . Analysis of flexural toppling failure of rock slopes subjected to the load applied on the top [J]. Rock and Soil Mechanics, 2019, 40(8): 2938-2946.
[3] LIU Xin-rong, DENG Zhi-yun, LIU Yong-quan, LIU SHU-lin, LU Yu-ming, . Study of cumulative damage and failure mode of horizontal layered rock slope subjected to seismic loads [J]. Rock and Soil Mechanics, 2019, 40(7): 2507-2516.
[4] YU Guo, XIE Mo-wen, SUN Zi-hao, LIU Peng. Construction of approximation function of normal stress distribution on sliding surface of three-dimensional symmetrical slope based on GIS [J]. Rock and Soil Mechanics, 2019, 40(6): 2332-2340.
[5] YU Guo, XIE Mo-wen, ZHENG Zheng-qin, QIN Shi-he, DU Yan, . Research on slope stability calculation method based on GIS [J]. Rock and Soil Mechanics, 2019, 40(4): 1397-1404.
[6] YAN Min-jia, XIA Yuan-you, LIU Ting-ting. Limit analysis of bedding rock slopes reinforced by prestressed anchor cables under seismic loads [J]. , 2018, 39(7): 2691-2698.
[7] YAN Shu-wang, LI Jia, YAN Yue, CHEN Hao,. Research on stable limit depth of vertical cylinder hole in cohesive soil ground [J]. , 2018, 39(4): 1176-1181.
[8] YANG Ming-hui, DAI Xia-bin, ZHAO Ming-hua, LUO Hong. Calculation of active earth pressure for limited soils with curved sliding surface [J]. , 2017, 38(7): 2029-2035.
[9] LU Kun-lin, WANG Yun-min, ZHU Da-yong,. A method for calculating reinforcing forces of 3D sliding mass and its engineering applications [J]. , 2017, 38(2): 501-506.
[10] DENG Dong-ping, LI Liang. Three-dimensional limit equilibrium method for slope stability based on assumption of stress on slip surface [J]. , 2017, 38(1): 189-196.
[11] LIU Zhen-ping, YANG Bo, LIU Jian, HE Huai-jian,. Three-dimensional limit equilibrium method based on GRASS GIS and TIN sliding surface [J]. , 2017, 38(1): 221-228.
[12] LIU Hai-jun, ZHAO Jian-jun, JU Neng-pan,. Mechanical analysis of toppling failure of rock slope [J]. , 2016, 37(S1): 289-294.
[13] ZHOU Yang-yi, FENG Xia-ting, XU Ding-ping, HE Ming-wu,. A simplified analysis method of block stability in large underground powerhouse [J]. , 2016, 37(8): 2391-2398.
[14] LIU Guo-huan , LIAN Ji-jian , WANG Hong-zhen , YU Tong-shun,. A practical method for applying the hydrodynamically induced mass and the sensitivity analysis of the ground-bucket foundation-tower system [J]. , 2016, 37(3): 767-775.
[15] LIU Zi-zhen , YAN Zhi-xin,. Limit equilibrium slice method for unsaturated clay slope under rainfall infiltration [J]. , 2016, 37(2): 350-356.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[3] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[4] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[5] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[6] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[7] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[8] LIU Zhen-ping, HE Huai-jian, ZHU Fa-hua. Study of technology of fast 3D modeling and visualization based on borehole data[J]. , 2009, 30(S1): 260 -266 .
[9] ZHAO Yue-tang, LIN Jia-wei, SHI Lei. Research of spalling under impulse loading[J]. , 2011, 32(S2): 122 -126 .
[10] WANG Guo-cui, YANG Min. Nonlinear analysis of laterally loaded piles in sand[J]. , 2011, 32(S2): 261 -267 .