›› 2014, Vol. 35 ›› Issue (6): 1743-1750.

• Geotechnical Engineering • Previous Articles     Next Articles

An algorithm of obtaining shear strength of rock mass based on nonlinear relationship proposed by Hoek and its application to engineering

XIA Kai-zong, CHEN Cong-xin, ZHOU Yi-chao, WANG Yong-wei, FU Hua, OU Zhe   

  1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2013-03-17 Online:2014-06-10 Published:2014-06-20

Abstract: A principle of nonlinear relationship proposed by Hoek is elaborated, then based on that, a new algorithm of obtaining shear strength of rock mass is brought forward by considering the overall or average level when rock mass is broken. Through the new algorithm, the magnitudes of shear stress can be calculated at different given normal stresses, and a series of shear stress and normal stress are generated; then the values of cohesion and internal frictional angle are determined via linear regression analysis, which solves the determination of shear strength under certain normal stress that Hoek-Brown criterion fitting algorithm can not do. Then a research on shear strength of rock mass from China-Myanmar oil and gas pipelines (domestic section) Lancang River across domain engineering as an example and a further comparison study is taken. It is shown that the values of cohesion and internal frictional angle determined by the first method according to the new algorithm are little different to these gained through the Hoek-Brown criterion fitting algorithm. The reason is that the factors considered are not the same, while the normal stress is in considered by the two algorithms resulting in confining pressure and normal stress are varied practical engineering is low, the cohesion and internal friction angle proposed by the second method according to the new algorithm, the results obtained are close to the actural situation, which has overcome the problem that Hoek-Brown criterion fitting algorithm relies on the confining pressure.

Key words: rock mechanics, shear strength, nonlinear relationship, shear stress, normal stress, engineering application

CLC Number: 

  • TU 459+.2
[1] TU Yuan, WANG Kui-hua, ZHOU Jian, HU An-feng, . Application of effective stress method and effective consolidation stress method for strength calculation in preloading ground [J]. Rock and Soil Mechanics, 2020, 41(2): 645-654.
[2] FAN Ke-wei, LIU Si-hong, LIAO Jie, FANG Bin-xin, WANG Jian-lei, . Experimental study on shearing characteristics of pebbles-filled soilbags [J]. Rock and Soil Mechanics, 2020, 41(2): 477-484.
[3] LI Xiao-gang, ZHU Chang-qi, CUI Xiang, ZHANG Po-yu, WANG Rui, . Experimental study of triaxial shear characteristics of carbonate mixed sand [J]. Rock and Soil Mechanics, 2020, 41(1): 123-131.
[4] ZHANG Yan-bo, SUN Lin, YAO Xu-long, LIANG Peng, TIAN Bao-zhu, LIU Xiang-xin, . Experimental study of time-frequency characteristics of acoustic emission key signals during granite fracture [J]. Rock and Soil Mechanics, 2020, 41(1): 157-165.
[5] ZHANG Chen-yang, CHEN Min, HU Ming-jian, WANG Xin-zhi, TANG Jian-jian, . Effect of fine particles content on shear strength of calcareous sand [J]. Rock and Soil Mechanics, 2019, 40(S1): 195-202.
[6] WANG Huan, CHEN Qun, WANG Hong-xin, ZHANG Wen-ju, . Triaxial tests on fly ash with different compaction and matric suction [J]. Rock and Soil Mechanics, 2019, 40(S1): 224-230.
[7] KONG Liang, LIU Wen-zhuo, YUAN Qing-meng, DONG Tong, . Triaxial tests on gassy sandy soil under constant shear stress paths [J]. Rock and Soil Mechanics, 2019, 40(9): 3319-3326.
[8] CHEN Bing-rui, WU Hao, CHI Xiu-wen, LIU Hui, WU Meng-die, YAN Jun-wei, . Real-time recognition algorithm for microseismic signals of rock failure based on STA/LTA and its engineering application [J]. Rock and Soil Mechanics, 2019, 40(9): 3689-3696.
[9] SEISUKE Okubo, TANG Yang, XU Jiang, PENG Shou-jian, CHEN Can-can, YAN Zhao-song, . Application of 3D-DIC system in rock mechanic test [J]. Rock and Soil Mechanics, 2019, 40(8): 3263-3273.
[10] LI Xin-ming, KONG Ling-wei, GUO Ai-guo, . Experimental study of ageing effect on mechanical properties of Nanyang undisturbed expansive soil [J]. Rock and Soil Mechanics, 2019, 40(8): 2947-2955.
[11] MA Qiu-feng, QIN Yue-ping, ZHOU Tian-bai, YANG Xiao-bin. Mechanical properties and constitutive model of porous rock under loading and unloading [J]. Rock and Soil Mechanics, 2019, 40(7): 2673-2685.
[12] YAN Zhi-xin, LONG Zhe, QU Wen-rui, ZHANG Sen, JIANG Ping, . The effect of shear on the anchorage interface of rock slope with weak layers under earthquake [J]. Rock and Soil Mechanics, 2019, 40(7): 2882-2890.
[13] TIAN Jun, LU Gao-ming, FENG Xia-ting, LI Yuan-hui, ZHANG Xi-wei. Experimental study of the microwave sensitivity of main rock-forming minerals [J]. Rock and Soil Mechanics, 2019, 40(6): 2066-2074.
[14] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A nonlinear creep model of rock based on the strain softening index [J]. Rock and Soil Mechanics, 2019, 40(6): 2239-2246.
[15] CHEN Jian-xu, SONG Wen-wu, . Non-limit active earth pressure for retaining wall under translational motion [J]. Rock and Soil Mechanics, 2019, 40(6): 2284-2292.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[2] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[3] ZHANG Cheng-ping,ZHANG Ding-li,LUO Jian-jun,WANG Meng-shu,WU Jie-pu. Remote monitoring system applied to the construction of metro station undercrossing existing metro tunnel[J]. , 2009, 30(6): 1861 -1866 .
[4] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
[5] ZHANG Yuan, WAN Zhi-jun, KANG Jian-rong, ZHAO Yang-sheng. Analysis of stage characteristics of sandstone permeability under conditions of temperature and triaxial stress[J]. , 2011, 32(3): 677 -683 .
[6] ZHANG Xue-chan , GONG Xiao-nan , YIN Xu-yuan , ZHAO Yu-bo. Monitoring analysis of retaining structures for Jiangnan foundation pit of Qingchun road river-crossing tunnel in Hangzhou[J]. , 2011, 32(S1): 488 -0494 .
[7] TANG Shi-bin, TANG Chun-an, LI Lian-chong, ZHANG Yong-bin. Investigation on time-dependent deformation of tunnel induced by humidity diffusion[J]. , 2011, 32(S1): 697 -0703 .
[8] XI Ren-shuang, CHEN Cong-xin, XIAO Guo-feng, HUANG Ping-lu. Study of influence of discontinuities on rock movement and surface deformation in eastern area of Chengchao iron mine[J]. , 2011, 32(S2): 532 -538 .
[9] HE Si-ming , ZHANG Xiao-xi , WANG Dong-po . Study of computation methods of ultimate uplift capacity and determining position of failure surface of uplift piles in layered soil[J]. , 2012, 33(5): 1433 -1437 .
[10] LIU Xiao-li , LI Bai . Analysis of supporting mechanism of micro-steel-pipe piles in rock foundation pit[J]. , 2012, 33(S1): 217 -222 .