›› 2014, Vol. 35 ›› Issue (S1): 365-372.

• Numerical Analysis • Previous Articles     Next Articles

Stability analysis of rock slope with connected joint

SONG Yu-cai1,SUN Xu-shu2   

  1. 1. School of Water Resources and Hydropower, Wuhan University, Wuhan 430072, China; 2. College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, Hubei 443002, China
  • Received:2014-01-24 Online:2014-06-10 Published:2014-06-20

Abstract: The shear strength of jointed rock masses is determined by the structural surface and the adjacent intact rock shear strength; When the structural surface is completely connected, the shear strength of rock mass is determined entirely by the structural surface. Monte Carlo method can simulate the spatial distribution of the discontinuity in jointed rock masses according to the geometry parameters of the structural surface; and then the connected structural surface can be searched via depth-first algorithm; and compared with the rock mass, the shear strength of the connected structural surface is the smallest; so it can be considered as the potential sliding surface of jointed rock slope. The stability of a series of sliding surfaces can be analysed by the limit equilibrium method. This method is the complement of the jointed rock slope stability analysis.

Key words: jointed rock masses, dominant orientation of structural surface, sliding surface, Monte Carlo method, depth-first algorithm, limit equilibrium method

CLC Number: 

  • TU 452
[1] ZHANG Hai-na, CHEN Cong-xin, ZHENG Yun, SUN Chao-yi, ZHANG Ya-peng, LIU Xiu-min, . Analysis of flexural toppling failure of rock slopes subjected to the load applied on the top [J]. Rock and Soil Mechanics, 2019, 40(8): 2938-2946.
[2] HUANG Sheng-gen, SHEN Jia-hong, LI Meng, . Reliability analysis of bearing capacity of post-grouted bored piles [J]. Rock and Soil Mechanics, 2019, 40(5): 1977-1982.
[3] ZHANG Xiao-xi, HE Si-ming, FAN Xiao-yi, . Seismic stability of L-shape retaining walls and determination method of sliding surface [J]. Rock and Soil Mechanics, 2019, 40(10): 4011-4020.
[4] ZHOU Yong, WANG Xu-ri, ZHU Yan-peng, LI Jing-bang, JIANG Xiao-kui,. Monitoring and numerical simulation of an interbedding high slope composed of soft and hard strong-weathered rock [J]. , 2018, 39(6): 2249-2258.
[5] YAN Shu-wang, LI Jia, YAN Yue, CHEN Hao,. Research on stable limit depth of vertical cylinder hole in cohesive soil ground [J]. , 2018, 39(4): 1176-1181.
[6] YANG Gui, WANG Yang-yang, LIU Yan-chen, . Analysis of active earth pressure on retaining walls based on curved sliding surface [J]. , 2017, 38(8): 2182-2188.
[7] YANG Ming-hui, DAI Xia-bin, ZHAO Ming-hua, LUO Hong. Calculation of active earth pressure for limited soils with curved sliding surface [J]. , 2017, 38(7): 2029-2035.
[8] LIU Zhen-ping, YANG Bo, LIU Jian, HE Huai-jian,. Three-dimensional limit equilibrium method based on GRASS GIS and TIN sliding surface [J]. , 2017, 38(1): 221-228.
[9] ZHOU Yong, WANG Zheng-zhen, . Improvement of internal stability analysis method of soil nailing wall [J]. , 2016, 37(S2): 356-362.
[10] ZHOU Yang-yi, FENG Xia-ting, XU Ding-ping, HE Ming-wu,. A simplified analysis method of block stability in large underground powerhouse [J]. , 2016, 37(8): 2391-2398.
[11] YAN Chao ,LIU Song-yu ,JI Xiao-lei,. Research on a secondary sliding surface analysis approach based on strength reduction method [J]. , 2016, 37(4): 935-942.
[12] DOU Hong-qiang ,HAN Tong-chun ,GONG Xiao-nan ,LI Zhi-ning,QIU Zi-yi,. Reliability analysis of slope stability considering variability of soil saturated hydraulic conductivity under rainfall infiltration [J]. , 2016, 37(4): 1144-1152.
[13] ZHU Lei, HUAN Run-qiu, WANG Xiao-qun, NIE De-xin. Stability study of landslide based on dynamic evolution of sliding surface strength parameter [J]. , 2015, 36(S2): 431-438.
[14] WU Xing-zheng , JIANG Liang-wei , LUO Qiang , KONG De-hui , ZHANG Liang , . Analysis of model uncertainty for stability reliability of embankment slope [J]. , 2015, 36(S2): 665-672.
[15] LIU Shuan-qi , LU Kun-lin , ZHU Da-yong , WU Ying-lei , GAN Wen-ning , . A method for calculating the ultimate bearing capacity of a strip footing on the reinforced sand [J]. , 2015, 36(8): 2307-2314.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] GAO Guang-yun, ZHAO Yuan-yi, GAO Meng, YANG Cheng-bin. Improved calculation for lateral dynamic impedance of pile groups in layered soil[J]. , 2010, 31(2): 509 -515 .
[2] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[3] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[4] LEI Ming-feng, PENG Li-min, SHI Cheng-hua, AN Yong-lin. Research on construction spatial effects in large-long-deep foundation pit[J]. , 2010, 31(5): 1579 -1584 .
[5] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[6] LIU Han-long,TAO Xue-jun,ZHANG Jian-wei,CHEN Yu-min. Behavior of PCC pile composite foundation under lateral load[J]. , 2010, 31(9): 2716 -2722 .
[7] YANG Zhao-liang, SUN Guan-hua, ZHENG Hong. Global method for stability analysis of slopes based on Pan’s maximum principle[J]. , 2011, 32(2): 559 -563 .
[8] WANG Guang-jin,YANG Chun-he ,ZHANG Chao,MA Hong-ling,KONG Xiang-yun ,HO. Research on particle size grading and slope stability analysis of super-high dumping site[J]. , 2011, 32(3): 905 -913 .
[9] HU Hai-jun, JIANG Ming-jing, ZHAO Tao, PENG Jian-bing, LI Hong. Effects of specimen-preparing methods on tensile strength of remolded loess[J]. , 2009, 30(S2): 196 -199 .
[10] XU Chong, LIU Bao-guo, LIU Kai-yun, GUO Jia-qi. Intelligent analysis model of landslide displacement time series based on coupling PSO-GPR[J]. , 2011, 32(6): 1669 -1675 .