›› 2014, Vol. 35 ›› Issue (S2): 198-203.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study of external water pressure estimation method for reinforced concrete lining of hydraulic tunnels

ZHOU Ya-feng, SU Kai, WU He-gao   

  1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
  • Received:2014-03-10 Online:2014-10-31 Published:2014-11-12

Abstract: The external water pressure is the key factor for lining structural safety in construction, operation and maintenance condition. The traditional method for external water pressure estimation is with empirical formula. However, the effects of geology, boundary, excavation and lining construction aren’t adequately taken into account; and the solution results have risks and uncertainties. This paper reviews the general methods for external water pressure estimation, such as discount coefficient method, theoretically analytical method and numerical analysis method. The numerical results compared with the analytical results under different permeability environment and lining support forms illustrate the viability of the numerical analysis method. The numerical model scope is discussed to reduce the calculation error. The evolution process of seepage field is captured along with the tunnel excavation and lining supporting. The results show that the external water pressure on lining increases with the increase of permeability of surrounding rock and the lining thickness. The distance from the tunnel center to the boundary should not be less than 30 times tunnel diameter. Considering the transient effect, the tunnel seepage field tends to be stable within 10 days after the excavation; the water pressure distribution tends to be stable within 20 days after the lining supporting.

Key words: hydraulic tunnel, lining, external water pressure, discount coefficient, seepage flow

CLC Number: 

  • TV 672.1
[1] HOU Gong-yu, XIE Bing-bing, HAN Yu-chen, HU Tao, LI Zi-xiang, YANG Xing-kun, ZHOU Tian-ci, XIAO Hai-lin, . Experimental study and engineering application of coupling performance between distributed embedded optical fiber and tunnel lining [J]. Rock and Soil Mechanics, 2020, 41(2): 714-726.
[2] ZHANG Zhi-guo, LI Sheng-nan, ZHANG Cheng-ping, WANG Zhi-wei, . Analysis of stratum deformation and lining response induced by shield construction considering influences of underground water level rise and fall [J]. Rock and Soil Mechanics, 2019, 40(S1): 281-296.
[3] ZHOU Hui, ZHENG Jun, HU Da-wei, ZHANG Chuan-qing, LU Jing-jing, GAO Yang, ZHANG Wang, . Deterioration mechanism of tunnel lining structure in the carbonated water environment [J]. Rock and Soil Mechanics, 2019, 40(7): 2469-2477.
[4] GAO Cheng-lu, LI Shu-cai, LIN Chun-jin, LI Li-ping, ZHOU Zong-qing, LIU Cong, SUN Shang-qu, . Development and application of model test system for water leakage disease in tunnel lining [J]. Rock and Soil Mechanics, 2019, 40(4): 1614-1622.
[5] SUN Ming-she, MA Tao, SHEN Zhi-jun, WU Xu, WANG Meng-shu,. Study of lining sharing surrounding rock pressure in composite lining structure [J]. , 2018, 39(S1): 437-445.
[6] ZHANG Chuan-qing, GAO Yang, LIU Ning, ZHOU Hui, FENG Xia-ting, . Reflection on the problems in mechanical response monitoring and testing design of deep tunnels [J]. , 2018, 39(7): 2626-2631.
[7] WU Shun-chuan, HAN Wei, CHEN Fan, XU Miao-fei, CONG Zi-jie,. Optimisation of buffer layer thickness in gypsum rock tunnel based on swelling constitutive model [J]. , 2018, 39(4): 1182-1191.
[8] KUANG Lian-fei, ZHOU Guo-qing, WANG Jian-zhou, ZHU Kun-peng, SHANG Xiang-yu,. Research on inclined digging technology for deviation rectification of rooting mine shaft tower [J]. , 2018, 39(4): 1422-1430.
[9] YANG Wen-bo, CHEN Zi-quan, XU Zhao-yang, YAN Qi-xiang, HE Chuan, WEI Kai, . Dynamic response of shield tunnels and surrounding soil induced by train vibration [J]. , 2018, 39(2): 537-545.
[10] WANG Shao-jie, LÜ Ai-zhong, ZHANG Xiao-li. Analytical solution for the non-circular hydraulic tunnel buried in the orthotropic rock mass [J]. Rock and Soil Mechanics, 2018, 39(12): 4437-4447.
[11] SU Guo-shao, QIN Zi-hua, PENG Li-feng, ZOU Ya-feng, HU Xiao-chuan, . Load-bearing characteristics of surrounding rock of hydraulic tunnels under high temperature and hydraulic pressure conditions using coupled thermo-hydro-mechanical-damage numerical model [J]. , 2018, 39(1): 308-319.
[12] LI Hong-bo, JIA Feng, LI Jing, LI Shuo-biao,. Key technologies for design of subsea tunnel of Dalian metro line 5 [J]. , 2017, 38(S1): 395-401.
[13] WANG Yin, AI Jun, YANG Qing,. A CFD-DEM coupled method incorporating soil inter-particle rolling resistance [J]. , 2017, 38(6): 1771-1780.
[14] YE Zu-yang, JIANG Qing-hui, LIU Yan-zhang, CHENG Ai-ping, . Numerical analysis of unsaturated seepage flow in discrete fracture networks of rock [J]. , 2017, 38(11): 3332-3340.
[15] LI Yao, LI Shu-cai, XU Lei, LIU Bin, LIN Chun-jin, ZHANG Feng-kai, YANG Lei. Forward simulation of ground penetrating radar and its application to detection of tunnel lining diseases [J]. , 2016, 37(12): 3627-3634.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[2] ZHANG Wen-jie,CHEN Yum-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. , 2010, 31(1): 211 -215 .
[3] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[4] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[5] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[6] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[7] HU Yong-gang, LUO Qiang, ZHANG Liang, HUANG Jing, CHEN Ya-mei. Deformation characteristics analysis of slope soft soil foundation treatment with mixed-in-place pile by centrifugal model tests[J]. , 2010, 31(7): 2207 -2213 .
[8] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[9] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[10] YANG Zhao-liang, SUN Guan-hua, ZHENG Hong. Global method for stability analysis of slopes based on Pan’s maximum principle[J]. , 2011, 32(2): 559 -563 .