›› 2014, Vol. 35 ›› Issue (S2): 232-239.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Analysis of coupled seepage and deformation of expansive soil foundation under low embankment

CHEN Wei-zhi1, 2,JIANG Guan-lu1, 2,WANG Da-wei1,YUAN Ze-hua1, WANG Zhi-memg3,LI An-hong3   

  1. 1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China; 2. Key Laboratory of Highway Engineering of Sichuan Province, Southwest Jiaotong University, Chengdu 610031, China; 3. China Railway Eryuan Engineering Group Co., Ltd., Chengdu 610031, China
  • Received:2013-12-10 Online:2014-10-31 Published:2014-11-12

Abstract: Based on the mass conservation of fluid, Darcy law and elastic constitutive equation of expansive soil, two-dimensional equations of coupled seepage and deformation in expansive soil are obtained. Combined with the field soaking test on expansive soil foundation under low embankment of Yun-Gui high-speed railway, then both the numerical simulation considering coupling and that without considering coupling are used to analyze the swelling deformation characteristics of expansive soil foundation under low embankment. The study results indicate that the swelling deformation of ground surface can be fitted with hyperbola in the coupled case, but it increases gradually with time in the uncoupled case. The swelling deformation obtained from the numerical simulation which did not consider coupling is less than that obtained from the numerical simulation considering coupling at the same time. The relative expansion ratio decreases along the depth of foundation in the coupled and uncoupled case. In addition, the numerical calculated values are compared with test results in field. It is pointed out that the numerical simulation without considering the effects of coupling is difficult to describe the swelling deformation of expansive soil foundation under the artificial soaking condition. On the other hand, the results from the numerical simulation considering the impacts of coupling agree well with the measured results.

Key words: low embankment, expansive soil foundation, seepage and deformation, coupling, artificial soaking

CLC Number: 

  • TU 443
[1] HOU Gong-yu, XIE Bing-bing, HAN Yu-chen, HU Tao, LI Zi-xiang, YANG Xing-kun, ZHOU Tian-ci, XIAO Hai-lin, . Experimental study and engineering application of coupling performance between distributed embedded optical fiber and tunnel lining [J]. Rock and Soil Mechanics, 2020, 41(2): 714-726.
[2] XIA Cai-chu, YU Qiang-feng, QIAN Xin, GUI Yang, ZHUANG Xiao-qing. Experimental study of shear-seepage behaviour of rock joints under constant normal stiffness [J]. Rock and Soil Mechanics, 2020, 41(1): 57-66.
[3] XU Jiang, WU Jun-yu, LIU Yi-xin, LIE Jiao, . Experimental study of shear-seepage coupling properties of rock mass under different filling degrees [J]. Rock and Soil Mechanics, 2019, 40(9): 3416-3424.
[4] LU Chen-kai, KONG Gang-qiang, SUN Guang-chao, CHEN Bin, YIN Gao-xiang, . Field tests on thermal-mechanical coupling characteristics of energy pile in pile-raft foundation [J]. Rock and Soil Mechanics, 2019, 40(9): 3569-3575.
[5] HOU Hui-ming, HU Da-wei, ZHOU Hui, LU Jing-jing, LÜ Tao, ZHANG Fan, . Thermo-hydro-mechanical coupling simulation method of surrounding rock in high-level radioactive waste repository considering effective meso-thermal parameters [J]. Rock and Soil Mechanics, 2019, 40(9): 3625-3634.
[6] CHEN Yong, SU Jian, TAN Yun-zhi, CHAN Dave, . Water retention capacities of soils under the coupling actions of cyclic drying-wetting and repeated loading-unloading [J]. Rock and Soil Mechanics, 2019, 40(8): 2907-2913.
[7] HAN Tong-chun, LIN Bo-wen, HE Lu, SU Yu-qin, . Three-dimensional slope modelling method and its stability based on coupled GIS and numerical simulation software [J]. Rock and Soil Mechanics, 2019, 40(7): 2855-2865.
[8] ZHOU Feng-xi, GAO Guo-yao, . Steady-state analysis of the heat-moisture-salt coupling for unsaturated soil [J]. Rock and Soil Mechanics, 2019, 40(6): 2050-2058.
[9] CHENG Guan-chu, LING Dao-sheng, SUN Zu-feng, . Analysis of flow in clay using electrokinetics considering coupling driving forces [J]. Rock and Soil Mechanics, 2019, 40(6): 2247-2256.
[10] YANG Zong-ji, CAI Huan, LEI Xiao-qin, WANG Li-yong, DING Peng-peng, QIAO Jian-ping, . Experiment on hydro-mechanical behavior of unsaturated gravelly soil slope [J]. Rock and Soil Mechanics, 2019, 40(5): 1869-1880.
[11] WANG Yin, ZHOU Ling-xin, YANG Qing. New drag coefficient model for irregular calcareous sand particles and its application into fluid-particle coupling simulation [J]. Rock and Soil Mechanics, 2019, 40(5): 2009-2015.
[12] JIANG Zhong-ming, LIU Li-yuan, ZHAO Hai-bin, TANG Dong, HU Wei, MEI Song-hua, LI Peng, . Study of dynamic boundary conditions for thermo-mechanical coupling analysis of underground gas storage cavern [J]. Rock and Soil Mechanics, 2019, 40(3): 1149-1157.
[13] CHEN Wei-zhong, LI Fan-fan, MA Yong-shang, LEI Jiang, YU Hong-dan, XING Tian-hai, ZHENG You-lei, JIA Xiao-dong, . Development of a parallel-linkage triaxial testing machine for THM coupling in soft rock [J]. Rock and Soil Mechanics, 2019, 40(3): 1213-1220.
[14] WANG Qi-qian, ZHOU Hong-fu, FU Wen-xi, YE Fei, . Analysis for influence of water flow drag force on stability of slope shallow soil [J]. Rock and Soil Mechanics, 2019, 40(2): 759-766.
[15] ZHENG An-xing, LUO Xian-qi, CHEN Zhen-hua, . Hydraulic fracturing coupling model of rock mass based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(2): 799-808.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao,TANG Hui-ming,LIU Yu. A new model for landslide displacement prediction based on set pair analysis and fuzzy-Markov chain[J]. , 2009, 30(11): 3399 -3405 .
[2] HU Da-wei, ZHOU Hui, XIE Shou-yi, ZHANG Kai, SHAO Jian-fu, FENG. Study of Biot’s coefficients of marble during plastic deformation phase[J]. , 2009, 30(12): 3727 -3732 .
[3] SHI Xu-chao,HAN Yang. Water absorption test of soft clay after rebound under unloading[J]. , 2010, 31(3): 732 -736 .
[4] ZHU Jian-ming,PENG Xin-po,YAO Yang-ping,XU Jin-hai. Application of SMP failure criterion to computing limit strength of coal pillars[J]. , 2010, 31(9): 2987 -2990 .
[5] YUAN Xi-zhong, LI Ning , ZHAO Xiu-yun, YANG Yin-tao. Analysis of sensitivity of frozen ground bearing capacity to climate change in Northeast China permafrost regions[J]. , 2010, 31(10): 3265 -3272 .
[6] BAI Bing, LI Xiao-chun, SHI Lu, TANG Li-zhong. Slope identity of elastoplastic stress-strain curve and its verification and application[J]. , 2010, 31(12): 3789 -3792 .
[7] TANG Li-min. Regularization algorithm of foundation settlement prediction model[J]. , 2010, 31(12): 3945 -3948 .
[8] LI Zhan-hai,ZHU Wan-cheng,FENG Xia-ting,LI Shao-jun,ZHOU Hui,CHEN Bing-rui. Effect of lateral pressure coefficients on damage and failure process of horseshoe-shaped tunnel[J]. , 2010, 31(S2): 434 -441 .
[9] CAI Hui-teng, WEI Fu-quan, CAI Zong-wen. Study of silty clay dynamic characteristics in Chongqing downtown area[J]. , 2009, 30(S2): 224 -228 .
[10] SONG Ling , LIU Feng-yin , LI Ning . On mechanism of rotary cone penetration test[J]. , 2011, 32(S1): 787 -0792 .