›› 2014, Vol. 35 ›› Issue (S2): 37-44.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study and application of deformation characteristics of compacted loess

HUANG Xue-feng1, 2,KONG Yang1,LI Xu-dong2,MA Long1,YANG Bao-shan3   

  1. 1. School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China; 2. Department of Architectural Engineering, Logistical Engineering University of PLA, Chongqing 401331, China; 3. Electronic Comprehensive Investigation and Surveying Institute of Ministry of Information Industry, Xi’an 710054, China
  • Received:2014-02-20 Online:2014-10-31 Published:2014-11-12

Abstract: The high loess-filled project research is a new research topic in the field of geotechnical engineering with impressive prospects. In this paper, indoor compression consolidation and moistening tests are carried out for high loess-filled project researches in Yan’an new district; the influence factors of deformation characteristics of compacted loess are analyzed; the best fitting model of vertical pressure and strain of compacted loess is built; and also, the consolidation and moistening settlements of the 100 m high project are predicted under different compactnesses. The results show that: (1) The vertical pressure-strain curves of compacted loess can be expressed with Gunary model. (2) The lower compactness of compacted loess will produce collapsibility deformation under lower pressure, higher pressure does not; the moderate compactness does not produce collapsible deformation under lower pressure, but higher pressure does; with the continued increase of compactness, the compacted loess does not produce collapsibility deformation under both lower and higher pressure. (3) Under the condition of optimum water content, the settlements of the 100 m high project are predicted under different compactnesses, so as to guide the field compaction and test the quality of construction. (4) The higher the compactness of compacted loess is, the smaller the total amount of deformation is, the greater the amount of water moistening deformation ratio of the total amount of deformation is, the lesser the consolidation compression deformation ratio of the total amount of deformation is.

Key words: high loess-filled project, high pressure consolidation, deformation characteristic, Gunary model, secant modulus, correlation coefficient

CLC Number: 

  • TU 444
[1] LI Zhi-cheng, FENG Xian-dao, SHENG Li-long, . Experimental study of deformation characteristics of pebble cushion with furrow for immersed tunnel [J]. Rock and Soil Mechanics, 2019, 40(S1): 189-194.
[2] ZHAI Ming-lei, GUO Bao-hua, WANG Chen-lin, JIAO Feng, . Compression-shear failure characteristics of rock with penetrated fracture under normal unloading condition [J]. Rock and Soil Mechanics, 2019, 40(S1): 217-223.
[3] ZHANG Yi-hu, WU Ai-qing, ZHOU Huo-ming, WANG Shuai, LUO Rong, FAN Lei. Review of bearing capacity and deformation characteristics of tunnel- type anchorage for suspension bridge [J]. Rock and Soil Mechanics, 2019, 40(9): 3576-3584.
[4] LIU Jian, ZHU Zhao-hui, WU Hao, ZHANG Shi-lei, WANG Jin-ming, . Study of deformation characteristics of the high sidewall surrounding rock in super large underground caverns [J]. Rock and Soil Mechanics, 2019, 40(10): 4030-4040.
[5] DONG Zhi-hong, NIU Xin-qiang, DING Xiu-li, WENG YongHong, HUANG Shu-ling, PEI Qi-tao, ZHANG Lian, . Deformation characteristics and feedback analysis of surrounding rock of underground powerhouse at left bank of Wudongde Hydropower Station [J]. Rock and Soil Mechanics, 2018, 39(S2): 326-336.
[6] WU Chang-jiang, SUN Zhao-hua, LAI Yun-jin, BAO Hua, . Study of deformation characteristics of diaphragm wall induced by deep large excavation in soft soil region [J]. Rock and Soil Mechanics, 2018, 39(S2): 245-253.
[7] YANG Sheng-qi, LU Jia-wei, TIAN Wen-ling, TANG Jin-zhou,. Experimental study of mechanical behavior of rock specimens with different joint roughness coefficient under conventional triaxial compression [J]. , 2018, 39(S1): 21-32.
[8] YANG Qi, ZHANG You-yi, LIU Hua-qiang, QIN Hua,. Model test on load-failure of a foamed lightweight soil subgrade [J]. , 2018, 39(9): 3121-3129.
[9] LI Xuan, SUN De-an, ZHANG Jun-ran,. Effect of suction history on dynamic deformation characteristics of unsaturated silt [J]. , 2018, 39(8): 2829-2836.
[10] ZHAI Ming-lei, GUO Bao-hua, LI Bing-yang, JIAO Feng,. Energy and deformation characteristics of rock joints under multi-stage shear loading-creep-unloading conditions [J]. , 2018, 39(8): 2865-2872.
[11] CHEN Chao-bin, YE Guan-lin. Development of small-strain triaxial apparatus using LVDT sensors and its application to soft clay test [J]. , 2018, 39(6): 2304-2310.
[12] KONG Yang, RUAN Huai-ning, HUANG Xue-feng, . Deformation characteristics of compacted Malan loess in Yan’an region under high consolidation pressure [J]. , 2018, 39(5): 1731-1736.
[13] WANG Chun, TANG Li-zhong, CHENG Lu-ping, CHEN Yuan, LIU Tao, WEI Yong-heng, . Dynamic characteristics of skarn subjected to frequent dynamic disturbance under combined action of high axial compression and confining pressure [J]. Rock and Soil Mechanics, 2018, 39(12): 4537-4546.
[14] ZHANG Qiang-yong, ZHANG Long-yun, XIANG Wen, JIANG Li-yu, DING Yan-zhi1,. Triaxial creep test of gneissic granite considering thermal effect [J]. , 2017, 38(9): 2507-2514.
[15] ZHENG Dong, LI Dian-qing, CAO Zi-jun, PHOON Kok-kwang, . Effect of spatial variability on correlation between slope failure modes and system reliability of slope stability [J]. , 2017, 38(2): 517-524.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[2] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[3] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[4] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[5] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[6] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[7] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[8] LIU Zhen-ping, HE Huai-jian, ZHU Fa-hua. Study of technology of fast 3D modeling and visualization based on borehole data[J]. , 2009, 30(S1): 260 -266 .
[9] WEI Hou-zhen, YAN Rong-tao, WEI Chang-fu, WU Er-lin, CHEN Pan, TIAN Hui-hui. Summary of researches for phase-equilibrium of natural gas hydrates in bearing sediments[J]. , 2011, 32(8): 2287 -2294 .
[10] ZHAO Yue-tang, LIN Jia-wei, SHI Lei. Research of spalling under impulse loading[J]. , 2011, 32(S2): 122 -126 .