›› 2011, Vol. 32 ›› Issue (5): 1575-1582.

• Numerical Analysis • Previous Articles     Next Articles

Study of numerical simulation method of rock fracture based on strain energy density theory

SUN Qian, LI Shu-chen, FENG Xian-da, LI Wen-ting, YUAN Chao   

  1. Research Center of Geotechnical & Structural Engineering, Shandong University, Ji?nan 250061, China
  • Received:2010-06-07 Online:2011-05-10 Published:2011-09-23

Abstract: For the nonlinear fracture phenomena of rock, many numerical methods are carried out for study, but the numerical simulation methods for cracked rock are still being studied. Therefore, this paper combines the bilinear strain softening constitutive model with energy dissipation principle to establish damage constitutive equations; and through the strain energy density theory, energy failure criterion of mesoscopic element is established. When the strain energy of an element stored exceeds a fixed value, the element comes into damage situation and the damage degree increases with the increasing of energy dissipation. Simultaneously, the material properties of the damaged element change until it becomes the element with residual strength. As load increases, the element’s damage degree increases. When the strain energy of the element stored exceeds the established value of the energy criterion, the element gets into fracture. With the increasing of fractured elements, macro-crack generates. This method implements linear calculation instead of the process of nonlinear computation, avoids the singularity of the numerical calculation in element fracture, and simulates the post-peak fracture behaviour of rock. The algorithm can be used to develop a rock fracture process computer program by the FISH language in the fast Lagrangian analysis of continual (FLAC). This program is successfully applied to the simulation of Brazilian splitting and tensile test with cracks. The simulation results agree well with the experimental results. It indicates that the simulation method of rock failure process is correct and feasible.

Key words: strain energy density, energy dissipation, rock fracture, fast Lagrangian analysis of continua in 2D (FLAC2D)

CLC Number: 

  • O 241
[1] ZHAO Guo-yan, LI Zhen-yang, WU Hao, WANG En-jie, LIU Lei-lei. Dynamic failure characteristics of sandstone with non-penetrating cracks [J]. Rock and Soil Mechanics, 2019, 40(S1): 73-81.
[2] MA De-peng, ZHOU Yan, LIU Chuan-xiao, SHANG Yan-dong, . Energy evolution characteristics of coal failure in triaxial tests under different unloading confining pressure rates [J]. Rock and Soil Mechanics, 2019, 40(7): 2645-2652.
[3] ZHAO Zhen-hua, ZHANG Xiao-jun, LI Xiao-cheng, . Experimental study of stress relaxation characteristics of hard rocks with pressure relief hole [J]. Rock and Soil Mechanics, 2019, 40(6): 2192-2199.
[4] ZHANG Sheng, WANG Long-fei, CHANG Xu, WANG Dong-kun, WANG Xiao-liang, QIAO Yang, . Experimental study of size effect of fracture toughness of limestone using the notched semi-circular bend samples [J]. Rock and Soil Mechanics, 2019, 40(5): 1740-1749.
[5] XIAO Xiao-chun, FAN Yu-feng, WU Di, DING Xin, WANG Lei, ZHAO Bao-you, . Energy dissipation feature and rock burst risk assessment in coal-rock combinations [J]. Rock and Soil Mechanics, 2019, 40(11): 4203-4212.
[6] LI Zheng-wei, ZHANG Yan-jun, ZHANG Chi, XU Tian-fu,. Experiment on convection heat transfer characteristics in a single granite fracture [J]. , 2018, 39(9): 3261-3269.
[7] XIONG Feng, SUN Hao, JIANG Qing-hui, YE Zu-yang, XUE Dao-rui, LIU Ru-yan,. Theoretical model and experimental verification on non-linear flow at low velocity through rough-walled rock fracture [J]. , 2018, 39(9): 3294-3302.
[8] DUAN Min-ke, JIANG Chang-bao, YU Huan, LU Tian-yu, NIU Bin-wei, SUN Dong-ling,. Experimental research on energy dissipation and seepage properties of coal under loading-unloading conditions at different stress levels [J]. , 2018, 39(4): 1346-1354.
[9] SONG Yi-min, XING Tong-zhen, LÜ Xiang-feng, ZHAO Ze-xin, DENG Lin-lin, . Fracture characteristics of granite with mode-I pre-crack at different loading rates [J]. Rock and Soil Mechanics, 2018, 39(12): 4369-4375.
[10] WANG Yi-qun, HONG Yi, GUO Zhen, WANG Li-zhong, . Micro-and macro-mechanical behavior of crushable calcareous sand in South China Sea [J]. , 2018, 39(1): 199-206.
[11] HE Ming-ming, LI Ning, CHEN Yun-sheng, ZHU Cai-hui. Damping ratio and damping coefficient of rock under different cyclic loading conditions [J]. , 2017, 38(9): 2531-2538.
[12] XIE Can, LI Shu-chen, PING Yang, LI Jing-long, LI Shu-cai,. Study of nonlinear damage characteristics and numerical simulation of post-peak fractured rock mass [J]. , 2017, 38(7): 2128-2136.
[13] DU Hai-min, MA Wei, ZHANG Shu-juan, ZHOU Zhi-wei. Effects of confining pressure and water content on failure strain energy density for frozen silty sands [J]. , 2017, 38(7): 1943-1950.
[14] DU Hai-min, MA Wei, ZHANG Shu-juan, ZHOU Zhi-wei. Experimental investigation on deformation characteristics of ice-rich frozen silty sands under triaxial loading-unloading cycle [J]. , 2017, 38(6): 1675-1681.
[15] LIU Quan-sheng, JIANG Ya-long, HE Jun. Precision improvement methods and research trends of discontinuous deformation analysis [J]. , 2017, 38(6): 1746-171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Wen-jie,CHEN Yum-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. , 2010, 31(1): 211 -215 .
[2] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[3] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[4] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[5] HU Yong-gang, LUO Qiang, ZHANG Liang, HUANG Jing, CHEN Ya-mei. Deformation characteristics analysis of slope soft soil foundation treatment with mixed-in-place pile by centrifugal model tests[J]. , 2010, 31(7): 2207 -2213 .
[6] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[7] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[8] WANG Wei-ming, SUN Rui, CAO Zhen-zhong, YUAN Xiao-ming. Comparative study of features of liquefied sites at home and abroad[J]. , 2010, 31(12): 3913 -3918 .
[9] YANG Zhao-liang, SUN Guan-hua, ZHENG Hong. Global method for stability analysis of slopes based on Pan’s maximum principle[J]. , 2011, 32(2): 559 -563 .
[10] WANG Guang-jin,YANG Chun-he ,ZHANG Chao,MA Hong-ling,KONG Xiang-yun ,HO. Research on particle size grading and slope stability analysis of super-high dumping site[J]. , 2011, 32(3): 905 -913 .