›› 2017, Vol. 38 ›› Issue (7): 1943-1950.doi: 10.16285/j.rsm.2017.07.013

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Effects of confining pressure and water content on failure strain energy density for frozen silty sands

DU Hai-min, MA Wei, ZHANG Shu-juan, ZHOU Zhi-wei   

  1. State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
  • Received:2015-09-02 Online:2017-07-10 Published:2018-06-05
  • Supported by:

    This work was supported by the National Program on Key Basic Research Project of China (973 Program) (2012CB026106), the National Natural Science Foundation (41571064, 41630636), the Independent Program for State Key Laboratory of Frozen Soil Engineering (SKLFSE-ZT-07) and the Open Project Program of the State Key Laboratory of Frozen Soil Engineering (SKLFSE201605).

Abstract: Effects of confining pressure and water content on failure strain energy density of frozen silty sand are investigated in a comprehensive experimental program of triaxial compressive test under the condition of various confining pressures and a wide range of water content. The results show that when the water content is about 30.6%, the frozen soil is prone to plastic failure, while brittle failure occurs at other water contents. The influence of confining pressure on failure strain energy density can be divided into low confining pressures phase, medium confining pressures phase and high confining phase. And water content has an important effect on the boundary confining pressure. Two types of the effect of water content on failure strain energy density are observed. When confining pressure is low (50 kPa), failure strain energy density begins to increase with increasing the water content, and reaches a maximum (600 kPa) at water content of 30.6%. Then, as the water content continues to increase, the damage energy density decreases. When the water content reaches 60 kPa, the further increase of the water content no longer affects the damage energy density, i.e., the damage energy density of the frozen soil is close to that of the ice. When the confining pressure is high (≥ 500 kPa), there is no initial increase in the failure strain energy density compared to the low confining pressure stage.

Key words: ice-rich frozen soil, failure strain energy density, triaxial compression, confining pressure, water content

CLC Number: 

  • TU 441+.5

[1] MENG Qing-bin, WANG Jie, HAN Li-jun, SUN Wen, QIAO Wei-guo, WANG Gang, . Physical and mechanical properties and constitutive model of very weakly cemented rock [J]. Rock and Soil Mechanics, 2020, 41(S1): 19-29.
[2] YANG Kai-xuan, HOU Tian-shun. Influence of compaction test types on compaction characteristics of EPS particles light weight soil [J]. Rock and Soil Mechanics, 2020, 41(6): 1971-1982.
[3] HOU Zhi-qiang, WANG Yu, LIU Dong-qiao, LI Chang-hong, LIU Hao. Experimental study of mechanical properties of marble under triaxial unloading confining pressure after fatigue loading [J]. Rock and Soil Mechanics, 2020, 41(5): 1510-1520.
[4] DU Yu-xiang, SHENG Qian, WANG Shuai, FU Xiao-dong, LUO Hong-xing, TIAN Ming, WANG Li-wei, MEI Hong-ru. Study of microstructure and mechanical properties of semi-diagenetic rock of Xigeda Formation [J]. Rock and Soil Mechanics, 2020, 41(4): 1247-1258.
[5] LI Zong-ze, JIANG De-yi, FAN Jin-yang, CHEN Jie, LIU Wei, WU Fei, DU Chao, KANG Yan-fei. Experimental study of triaxial interval fatigue of salt rock [J]. Rock and Soil Mechanics, 2020, 41(4): 1305-1312.
[6] MENG Xiang-chuan, ZHOU Jia-zuo, WEI Chang-fu, ZHANG Kun, SHEN Zheng-yan, YANG Zhou-jie, . Effects of salinity on soil freezing temperature and unfrozen water content [J]. Rock and Soil Mechanics, 2020, 41(3): 952-960.
[7] SHI Zhen-ning, QI Shuang-xing, FU Hong-yuan, ZENG Ling, HE Zhong-ming, FANG Rui-min, . A study of water content distribution and shallow stability of earth slopes subject to rainfall infiltration [J]. Rock and Soil Mechanics, 2020, 41(3): 980-988.
[8] GAO Feng, CAO Shan-peng, XIONG Xin, ZHOU Ke-ping, ZHU Long-yin, . Brittleness evolution characteristics of cyan sandstone under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2020, 41(2): 445-452.
[9] WEI Gang, ZHANG Xin-hai, LIN Xin-bei, HUA Xin-xin, . Variations of transverse forces on nearby shield tunnel caused by foundation pits excavation [J]. Rock and Soil Mechanics, 2020, 41(2): 635-644.
[10] ZHOU Cui-ying, LIANG Ning, LIU Zhen, . Fractal characteristics of compression failure of red soft rock and cascading failure process [J]. Rock and Soil Mechanics, 2019, 40(S1): 21-31.
[11] FAN Yun-hui, ZHU Qi-zhi, NI Tao, ZHANG Kun, ZHANG Zhen-nan, . A brittle-ductile transition constitutive model based on discrete elastic tensors [J]. Rock and Soil Mechanics, 2019, 40(S1): 181-188.
[12] DING Chang-dong, ZHANG Yang, YANG Xiang-tong, HU Da-wei, ZHOU Hui, LU Jing-jing, . Permeability evolution of tight sandstone under high confining pressure and high pore pressure and its microscopic mechanism [J]. Rock and Soil Mechanics, 2019, 40(9): 3300-3308.
[13] WANG Peng-fei, TAN Wen-hui, MA Xue-wen, LI Zi-jian, LIU Jing-jun, WU Yang-fan. Experimental study of seepage characteristics of consecutive and filling fracture with different roughness levels and gap-widths [J]. Rock and Soil Mechanics, 2019, 40(8): 3062-3070.
[14] ZHENG Yao-lin, ZHANG Rong-jun, ZHENG Jun-jie, DONG Chao-qiang, LU Zhan, . Experimental study of flocculation-solidification combined treatment of hydraulically dredged mud at extra high-water content [J]. Rock and Soil Mechanics, 2019, 40(8): 3107-3114.
[15] MA De-peng, ZHOU Yan, LIU Chuan-xiao, SHANG Yan-dong, . Energy evolution characteristics of coal failure in triaxial tests under different unloading confining pressure rates [J]. Rock and Soil Mechanics, 2019, 40(7): 2645-2652.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!