Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (4): 1247-1258.doi: 10.16285/j.rsm.2019.0717

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study of microstructure and mechanical properties of semi-diagenetic rock of Xigeda Formation

DU Yu-xiang1, 2, SHENG Qian1, 2, WANG Shuai3, FU Xiao-dong1, 2, LUO Hong-xing4, 5, TIAN Ming4, 5, WANG Li-wei1, 6, MEI Hong-ru1, 7   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources, Yangtze River Scientific Research Institute, Wuhan, Hubei 430010, China; 4. Yunnan Dayong Highway Construction Company Limited, Dali, Yunnan 671000, China; 5. Yunnan Communications Investment & Construction Group Co., Ltd., Kunming, Yunnan 650200, China; 6. School of Architecture & Civil Engineering, Shenyang University of Technology, Shenyang, Liaoning 110870, China; 7. College of Civil Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
  • Received:2019-04-21 Revised:2019-07-07 Online:2020-04-11 Published:2020-07-01
  • Supported by:
    This work was supported by the Traffic Science, Technology and Education Project of Yunnan Province ([2017] 33), the National Natural Science Foundation of China (U1402231) and the National Natural Science Foundation of China (51779250).

Abstract: In this study, semi-diagenetic rock specimens of the Xigeda Formation in Zhaizi village on Jinshajiang River were investigated. The mineral composition of the specimens was determined by X-ray diffraction (XRD), and the microstructure and change of mineral particles in natural and saturated states were observed by scanning electron microscopy (SEM). The influences of water and confining pressure on the strength and deformation of semi-diagenetic rock of Xigeda Formation were determined using triaxial compression test. And the microcosmic mechanism was also discussed. The strength characteristics of the semi-diagenetic rocks of Xigeda Formation different from that of the soil and the soft rock were revealed by statistical analysis of the relationship between the strength indexes and water content of rock, soil and soft rock. On the basis, engineering classification suggestions for the semi-diagenetic rocks of Xigeda Formation were given. Based on the above research, some conclusions are as follows. 1) The microstructure shows that the semi-diagenetic rock of Xigeda formation has weak cementitious structure which is obviously different from that of soil and rock. The cementation structure is easy to be destroyed after saturation. 2) The cohesion and friction angle of semi-diagenetic rock decrease with the increase of water content. The average modulus increases with the increase of confining pressure at high water content, it decreases with the increase of moisture content when the confining pressure is constant. 3) The order of cohesion is soft rock> semi-diagenetic rock of Xigeda Formation>soil. The sensitivity of the cohesion to the water content is soft rock> semi-diagenetic rock of Xigeda Formation>soil. The sensitivity of the friction angle to the water content is soil > semi-diagenetic rock of Xigeda Formation> soft rock. 4) The rocks or soils should be classified as hard soil-soft rock, with the uniaxial compressive strength between 0.2 and 3 MPa, and cohesion between 30 and 200 kPa, measured from a standard specimen (Φ 50 mm×100 mm). It is suggested that it should be distinguished from rock and soil in practical engineering application.

Key words: Xigeda, semi-diagenetic rock, water content, microstructure, strength deformation index, engineering classification

CLC Number: 

  • TU 43
[1] ZHANG Ji-wen, MU Qing-yi, LIAO Hong-jian, LIU Fen-liang, . A soil freezing characteristic curve model for capturing void ratio and specific surface area effects [J]. Rock and Soil Mechanics, 2020, 41(9): 2913-2921.
[2] LUO Yi, ZHANG Jia-ming, ZHOU Zhi, CHIKHOTKIN Victor, MI Min, SHEN Jun, . Evolution law of critical moisture content of soil cracking under rainfall-evaporation conditions [J]. Rock and Soil Mechanics, 2020, 41(8): 2592-2600.
[3] PAN Yong-liang, JIAN Wen-xing, LI Lin-jun, LIN Yu-qiu, TIAN Peng-fei. A study on the rainfall infiltration of granite residual soil slope with an improved Green-Ampt model [J]. Rock and Soil Mechanics, 2020, 41(8): 2685-2692.
[4] ZHAO Yi-qing, WU Chang-gui, JIN Ai-bing, SUN Hao, . Experimental study of sandstone microstructure and mechanical properties under high temperature [J]. Rock and Soil Mechanics, 2020, 41(7): 2233-2240.
[5] ZHU Nan, LIU Chun-yuan, ZHAO Xian-hui, WANG Wen-jing, . Micro-structure characteristics of structured clay under different stress paths in K0 consolidated drained tests [J]. Rock and Soil Mechanics, 2020, 41(6): 1899-1910.
[6] YANG Kai-xuan, HOU Tian-shun. Influence of compaction test types on compaction characteristics of EPS particles light weight soil [J]. Rock and Soil Mechanics, 2020, 41(6): 1971-1982.
[7] MENG Xiang-chuan, ZHOU Jia-zuo, WEI Chang-fu, ZHANG Kun, SHEN Zheng-yan, YANG Zhou-jie, . Effects of salinity on soil freezing temperature and unfrozen water content [J]. Rock and Soil Mechanics, 2020, 41(3): 952-960.
[8] SHI Zhen-ning, QI Shuang-xing, FU Hong-yuan, ZENG Ling, HE Zhong-ming, FANG Rui-min, . A study of water content distribution and shallow stability of earth slopes subject to rainfall infiltration [J]. Rock and Soil Mechanics, 2020, 41(3): 980-988.
[9] ZHANG Shan-kai, LENG Xian-lun, SHENG Qian, . Study of water swelling and softening characteristics of expansive rock [J]. Rock and Soil Mechanics, 2020, 41(2): 561-570.
[10] WANG Dong-xing, TANG Yi-kai, WU Lin-feng, . Evaluation on deep dewatering performance of dredged sludge treated by chemical flocculation-vacuum preloading [J]. Rock and Soil Mechanics, 2020, 41(12): 3929-3938.
[11] GUO Jun-yi, SUN Meng-ya, SHI Bin, WEI Guang-qing, LIU Jie. Experimental study of water content in soils monitored with active heated fiber optic method at different ambient temperatures [J]. Rock and Soil Mechanics, 2020, 41(12): 4137-4144.
[12] HUANG Tao, FANG Xiang-wei, ZHANG Wei, SHEN Chun-ni, LEI Yu-long, . Experimental study on solidified loess by microbes and reactive magnesium oxide [J]. Rock and Soil Mechanics, 2020, 41(10): 3300-3306.
[13] LEI Hua-yang, HU Yao, LEI Shuang-hua, QI Zi-yang, XU Ying-gang, . Analysis of microstructure characteristics of air-booster vacuum preloading for ultra-soft dredger fills [J]. Rock and Soil Mechanics, 2019, 40(S1): 32-40.
[14] ZHAO Bo, ZHANG Guang-qing, TANG Mei-rong, ZHUANG Jian-man, LIN Can-kun, . Mechanism of the effect of long-term water injection on mechanical properties of tight sandstone [J]. Rock and Soil Mechanics, 2019, 40(9): 3344-3350.
[15] DENG Hua-feng, ZHI Yong-yan, DUAN Ling-ling, PAN Deng, LI Jian-lin. Mechanical properties of sandstone and damage evolution of microstructure under water-rock interaction [J]. Rock and Soil Mechanics, 2019, 40(9): 3447-3456.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[3] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[4] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[5] CHU Xi-hua, XU Yuan-jie. Studies on transformation from M-C criterion to Drucker-Prager criterions based on distortion energy density[J]. , 2009, 30(10): 2985 -2990 .
[6] ZHANG Ming-yi, LIU Jun-wei, YU Xiu-xia. Field test study of time effect on ultimate bearing capacity of jacked pipe pile in soft clay[J]. , 2009, 30(10): 3005 -3008 .
[7] WU Liang, ZHONG Dong-wang, LU Wen-bo. Study of concrete damage under blast loading of air-decking[J]. , 2009, 30(10): 3109 -3114 .
[8] ZHOU Xiao-jie, JIE Yu-xin, LI Guang-xin. Numerical simulation of piping based on coupling seepage and pipe flow[J]. , 2009, 30(10): 3154 -3158 .
[9] DING Pei-zhong, ZHOU Mi, ZHANG Wei. Experimental research on clogging of mat base of inside and outside liner of Yellow River-crossing tunnel by concrete construction[J]. , 2009, 30(10): 3159 -3162 .
[10] JIANG Xiao-wei, WAN Li, WANG Xu-sheng, WU Xiong, CHENG Hui-hong. Estimation of depth-dependent hydraulic conductivity and deformation modulus using RQD[J]. , 2009, 30(10): 3163 -3167 .